These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 3439344)
1. Arsenic content in some Spanish wines. Influence of the wine-making technique on arsenic content in musts and wines. Aguilar MV; Martinez MC; Masoud TA Z Lebensm Unters Forsch; 1987 Sep; 185(3):185-7. PubMed ID: 3439344 [TBL] [Abstract][Full Text] [Related]
2. Determination of total arsenic, inorganic and organic arsenic species in wine. Herce-Pagliai C; Moreno I; González G; Repetto M; Cameán AM Food Addit Contam; 2002 Jun; 19(6):542-6. PubMed ID: 12042019 [TBL] [Abstract][Full Text] [Related]
3. Resveratrol content in wines and musts from the south of Spain. Martínez-Ortega MV; Carcía-Parrilla MC; Troncoso AM Nahrung; 2000 Aug; 44(4):253-6. PubMed ID: 10996899 [TBL] [Abstract][Full Text] [Related]
4. Arsenic present in the soil-vine-wine chain in vineyards situated in an old mining area in Trentino, Italy. Bertoldi D; Villegas TR; Larcher R; Santato A; Nicolini G Environ Toxicol Chem; 2013 Apr; 32(4):773-9. PubMed ID: 23322473 [TBL] [Abstract][Full Text] [Related]
5. Risks associated with arsenic exposure resulting from the consumption of California wines sold in the United States. Monnot AD; Tvermoes BE; Gerads R; Gürleyük H; Paustenbach DJ Food Chem; 2016 Nov; 211():107-13. PubMed ID: 27283613 [TBL] [Abstract][Full Text] [Related]
6. Analysis of arsenic, lead and cadmium in wines from the Canary Islands, Spain, by ICP/MS. Barbaste M; Medina B; Perez-Trujillo JP Food Addit Contam; 2003 Feb; 20(2):141-8. PubMed ID: 12623662 [TBL] [Abstract][Full Text] [Related]
7. Garnacha Tintorera-based sweet wines: chromatic properties and global phenolic composition by means of UV-Vis spectrophotometry. Figueiredo-González M; Cancho-Grande B; Simal-Gándara J Food Chem; 2013 Sep; 140(1-2):217-24. PubMed ID: 23578636 [TBL] [Abstract][Full Text] [Related]
8. Identification, content and distribution of anthocyanins and low molecular weight anthocyanin-derived pigments in Spanish commercial red wines. Blanco-Vega D; Gómez-Alonso S; Hermosín-Gutiérrez I Food Chem; 2014 Sep; 158():449-58. PubMed ID: 24731369 [TBL] [Abstract][Full Text] [Related]
9. Polysaccharide composition of Monastrell red wines from four different Spanish terroirs: effect of wine-making techniques. Apolinar-Valiente R; Williams P; Romero-Cascales I; Gómez-Plaza E; López-Roca JM; Ros-García JM; Doco T J Agric Food Chem; 2013 Mar; 61(10):2538-47. PubMed ID: 23425547 [TBL] [Abstract][Full Text] [Related]
10. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. Almeida CM; Vasconcelos MT J Agric Food Chem; 2003 Jul; 51(16):4788-98. PubMed ID: 14705914 [TBL] [Abstract][Full Text] [Related]
11. Determination of carotenoid profiles in grapes, musts, and fortified wines from Douro varieties of Vitis vinifera. Guedes De Pinho P; Silva Ferreira AC; Mendes Pinto M; Benitez JG; Hogg TA J Agric Food Chem; 2001 Nov; 49(11):5484-8. PubMed ID: 11714348 [TBL] [Abstract][Full Text] [Related]
12. Combine Use of Selected Schizosaccharomyces pombe and Lachancea thermotolerans Yeast Strains as an Alternative to the Traditional Malolactic Fermentation in Red Wine Production. Benito Á; Calderón F; Palomero F; Benito S Molecules; 2015 May; 20(6):9510-23. PubMed ID: 26016543 [TBL] [Abstract][Full Text] [Related]
13. Occurrence and stability of inorganic and organic arsenic species in wines, rice wines and beers from Central European market. Huang JH; Hu KN; Ilgen J; Ilgen G Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(1):85-93. PubMed ID: 22026389 [TBL] [Abstract][Full Text] [Related]
14. Effects of different oenological techniques on the elaboration of adequate base wines for red sparkling wine production: phenolic composition, sensory properties and foam parameters. González-Lázaro M; Martínez-Lapuente L; Palacios A; Guadalupe Z; Ayestarán B; Bueno-Herrera M; de la Cuesta PL; Pérez-Magariño S J Sci Food Agric; 2019 Aug; 99(10):4580-4592. PubMed ID: 30891763 [TBL] [Abstract][Full Text] [Related]
15. Removal of ochratoxin A from contaminated red wines by repassage over grape pomaces. Solfrizzo M; Avantaggiato G; Panzarini G; Visconti A J Agric Food Chem; 2010 Jan; 58(1):317-23. PubMed ID: 19919032 [TBL] [Abstract][Full Text] [Related]
16. Arsenic Content in American Wine. Wilson D J Environ Health; 2015 Oct; 78(3):16-22. PubMed ID: 26591333 [TBL] [Abstract][Full Text] [Related]
17. Differential effects of red and white wines on inhibition of the platelet-derived growth factor receptor: impact of the mash fermentation. Sparwel J; Vantler M; Caglayan E; Kappert K; Fries JW; Dietrich H; Böhm M; Erdmann E; Rosenkranz S Cardiovasc Res; 2009 Mar; 81(4):758-70. PubMed ID: 19074160 [TBL] [Abstract][Full Text] [Related]
18. Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Ajtony Z; Szoboszlai N; Suskó EK; Mezei P; György K; Bencs L Talanta; 2008 Jul; 76(3):627-34. PubMed ID: 18585331 [TBL] [Abstract][Full Text] [Related]
19. Matrix Extension and Multilaboratory Validation of Arsenic Speciation Method EAM §4.10 to Include Wine. Tanabe CK; Hopfer H; Ebeler SE; Nelson J; Conklin SD; Kubachka KM; Wilson RA J Agric Food Chem; 2017 May; 65(20):4193-4199. PubMed ID: 28457128 [TBL] [Abstract][Full Text] [Related]
20. Determination of Fluoride in Organic and Non-organic Wines. Paz S; Jaudenes JR; Gutiérrez AJ; Rubio C; Hardisson A; Revert C Biol Trace Elem Res; 2017 Jul; 178(1):153-159. PubMed ID: 28028786 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]