These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 34395)

  • 41. HIV-1 coat protein gp120 decreases NO-dependent cyclic GMP accumulation in rat brain astroglia by increasing cyclic GMP phosphodiesterase activity.
    Navarra M; Baltrons MA; Sardón T; Pedraza CE; García A
    Neurochem Int; 2004 Nov; 45(6):937-46. PubMed ID: 15312988
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Biochemical regulation and physiological significance of cyclic nucleotides in the nervous system.
    Kebabian JW
    Adv Cyclic Nucleotide Res; 1977; 8():421-508. PubMed ID: 21551
    [No Abstract]   [Full Text] [Related]  

  • 43. Inhaled nitric oxide decreases pulmonary soluble guanylate cyclase protein levels in 1-month-old lambs.
    Thelitz S; Bekker JM; Ovadia B; Stuart RB; Johengen MJ; Black SM; Fineman JR
    J Thorac Cardiovasc Surg; 2004 May; 127(5):1285-92. PubMed ID: 15115984
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression and activity of cGMP-dependent phosphodiesterases is up-regulated by lipopolysaccharide (LPS) in rat peritoneal macrophages.
    Witwicka H; Kobiałka M; Siednienko J; Mitkiewicz M; Gorczyca WA
    Biochim Biophys Acta; 2007 Feb; 1773(2):209-18. PubMed ID: 17141339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Alterations in hyperammonemia.
    Monfort P; Muñoz MD; Kosenko E; Llansola M; Sánchez-Pérez A; Cauli O; Felipo V
    Neurochem Int; 2004 Nov; 45(6):895-901. PubMed ID: 15312984
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of 1-(3-chloroanilino)-4-phenylphthalazine (MY-5445), a specific inhibitor of cyclic GMP phosphodiesterase, on human platelet aggregation.
    Hagiwara M; Endo T; Kanayama T; Hidaka H
    J Pharmacol Exp Ther; 1984 Feb; 228(2):467-71. PubMed ID: 6141286
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional identification of phosphodiesterase activity in human trabecular meshwork cells.
    Zhou L; Thompson WJ; Potter DE
    J Ocul Pharmacol Ther; 2000 Aug; 16(4):317-22. PubMed ID: 10977127
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of nitric oxide-sensitive guanylyl cyclase.
    Friebe A; Koesling D
    Circ Res; 2003 Jul; 93(2):96-105. PubMed ID: 12881475
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of [
    Kazmierczak BI
    Methods Mol Biol; 2017; 1657():23-29. PubMed ID: 28889283
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Illuminated rhodopsin is required for strong activation of retinal guanylate cyclase by guanylate cyclase-activating proteins.
    Yamazaki A; Yamazaki M; Yamazaki RK; Usukura J
    Biochemistry; 2006 Feb; 45(6):1899-909. PubMed ID: 16460036
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Changes in cyclic nucleotide metabolism in compensatory adrenal hypertrophy (following unilateral adrenalectomy)].
    Iudaev NA; Afinogenova SA; Zhukova TV
    Probl Endokrinol (Mosk); 1982; 28(6):59-66. PubMed ID: 6130520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Properties of adenylate cyclase and cyclic nucleotide phosphodiesterase in hamster isolated capillary preparations.
    Nemecek GM
    Biochim Biophys Acta; 1980 Mar; 628(2):125-35. PubMed ID: 6244001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cyclic GMP metabolism and its role in brain physiology.
    Domek-Łopacińska K; Strosznajder JB
    J Physiol Pharmacol; 2005 Mar; 56 Suppl 2():15-34. PubMed ID: 16077188
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Evidence for altered cyclic nucleotide metabolism during compensatory renal hypertrophy and neonatal kidney growth.
    Schlondorff D; Weber H
    Yale J Biol Med; 1978; 51(3):387-92. PubMed ID: 32665
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo reconstitution of the negative feedback in nitric oxide/cGMP signaling: role of phosphodiesterase type 5 phosphorylation.
    Mullershausen F; Russwurm M; Koesling D; Friebe A
    Mol Biol Cell; 2004 Sep; 15(9):4023-30. PubMed ID: 15240816
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Involvement of cGMP in cellular melatonin responses.
    Bubis M; Zisapel N
    Biol Cell; 1999 Jan; 91(1):45-9. PubMed ID: 10321021
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of renal injury-induced neurogenic hypertension on NO synthase, caveolin-1, AKt, calmodulin and soluble guanylate cyclase expressions in the kidney.
    Bai Y; Ye S; Mortazavi R; Campese V; Vaziri ND
    Am J Physiol Renal Physiol; 2007 Mar; 292(3):F974-80. PubMed ID: 17122386
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adenylate cyclase, cyclic nucleotide phosphodiesterase, and phosphorylase activity of cardiomyopathic hamster hearts.
    Sulakhe SJ; Russell BL; Sulakhe PV
    Recent Adv Stud Cardiac Struct Metab; 1976 May 26-29; 12():359-65. PubMed ID: 201998
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Soluble guanylate cyclase beta1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction.
    Mateos-Cáceres PJ; Garcia-Cardoso J; Lapuente L; Zamorano-León JJ; Sacristán D; de Prada TP; Calahorra J; Macaya C; Vela-Navarrete R; López-Farré AJ
    Int J Impot Res; 2006; 18(5):432-7. PubMed ID: 16528291
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Involvement of cyclic GMP phosphodiesterase activator in an hereditary retinal degeneration.
    Liu YP; Krishna G; Aguirre G; Chader GJ
    Nature; 1979 Jul; 280(5717):62-4. PubMed ID: 15305580
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.