These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Shape constrained fully convolutional DenseNet with adversarial training for multiorgan segmentation on head and neck CT and low-field MR images. Tong N; Gou S; Yang S; Cao M; Sheng K Med Phys; 2019 Jun; 46(6):2669-2682. PubMed ID: 31002188 [TBL] [Abstract][Full Text] [Related]
3. Lumbar Spine Computed Tomography to Magnetic Resonance Imaging Synthesis Using Generative Adversarial Network: Visual Turing Test. Hong KT; Cho Y; Kang CH; Ahn KS; Lee H; Kim J; Hong SJ; Kim BH; Shim E Diagnostics (Basel); 2022 Feb; 12(2):. PubMed ID: 35204619 [TBL] [Abstract][Full Text] [Related]
4. Magnetic resonance-based synthetic computed tomography images generated using generative adversarial networks for nasopharyngeal carcinoma radiotherapy treatment planning. Peng Y; Chen S; Qin A; Chen M; Gao X; Liu Y; Miao J; Gu H; Zhao C; Deng X; Qi Z Radiother Oncol; 2020 Sep; 150():217-224. PubMed ID: 32622781 [TBL] [Abstract][Full Text] [Related]
5. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging. Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353 [TBL] [Abstract][Full Text] [Related]
6. Paired conditional generative adversarial network for highly accelerated liver 4D MRI. Xu D; Miao X; Liu H; Scholey JE; Yang W; Feng M; Ohliger M; Lin H; Lao Y; Yang Y; Sheng K Phys Med Biol; 2024 Jun; 69(12):. PubMed ID: 38838679 [No Abstract] [Full Text] [Related]
7. Improving CBCT quality to CT level using deep learning with generative adversarial network. Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647 [TBL] [Abstract][Full Text] [Related]
8. Generating synthetic CTs from magnetic resonance images using generative adversarial networks. Emami H; Dong M; Nejad-Davarani SP; Glide-Hurst CK Med Phys; 2018 Jun; ():. PubMed ID: 29901223 [TBL] [Abstract][Full Text] [Related]
9. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients. Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292 [TBL] [Abstract][Full Text] [Related]
10. Machine-assisted interpolation algorithm for semi-automated segmentation of highly deformable organs. Luximon DC; Abdulkadir Y; Chow PE; Morris ED; Lamb JM Med Phys; 2022 Jan; 49(1):41-51. PubMed ID: 34783027 [TBL] [Abstract][Full Text] [Related]
11. CT synthesis from MR in the pelvic area using Residual Transformer Conditional GAN. Zhao B; Cheng T; Zhang X; Wang J; Zhu H; Zhao R; Li D; Zhang Z; Yu G Comput Med Imaging Graph; 2023 Jan; 103():102150. PubMed ID: 36493595 [TBL] [Abstract][Full Text] [Related]
12. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy. Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586 [TBL] [Abstract][Full Text] [Related]
13. On the effect of training database size for MR-based synthetic CT generation in the head. Estakhraji SIZ; Pirasteh A; Bradshaw T; McMillan A Comput Med Imaging Graph; 2023 Jul; 107():102227. PubMed ID: 37167815 [TBL] [Abstract][Full Text] [Related]
14. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks. Lei Y; Harms J; Wang T; Liu Y; Shu HK; Jani AB; Curran WJ; Mao H; Liu T; Yang X Med Phys; 2019 Aug; 46(8):3565-3581. PubMed ID: 31112304 [TBL] [Abstract][Full Text] [Related]
15. Automatic multi-organ segmentation in computed tomography images using hierarchical convolutional neural network. Sultana S; Robinson A; Song DY; Lee J J Med Imaging (Bellingham); 2020 Sep; 7(5):055001. PubMed ID: 33102622 [No Abstract] [Full Text] [Related]
16. Dosimetric evaluation of synthetic CT image generated using a neural network for MR-only brain radiotherapy. Tang B; Wu F; Fu Y; Wang X; Wang P; Orlandini LC; Li J; Hou Q J Appl Clin Med Phys; 2021 Mar; 22(3):55-62. PubMed ID: 33527712 [TBL] [Abstract][Full Text] [Related]
17. Multi-Modal Brain Tumor Data Completion Based on Reconstruction Consistency Loss. Jiang Y; Zhang S; Chi J J Digit Imaging; 2023 Aug; 36(4):1794-1807. PubMed ID: 36856903 [TBL] [Abstract][Full Text] [Related]
18. Cross-modality (CT-MRI) prior augmented deep learning for robust lung tumor segmentation from small MR datasets. Jiang J; Hu YC; Tyagi N; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2019 Oct; 46(10):4392-4404. PubMed ID: 31274206 [TBL] [Abstract][Full Text] [Related]
19. MedFusionGAN: multimodal medical image fusion using an unsupervised deep generative adversarial network. Safari M; Fatemi A; Archambault L BMC Med Imaging; 2023 Dec; 23(1):203. PubMed ID: 38062431 [TBL] [Abstract][Full Text] [Related]
20. Deep cross-modality (MR-CT) educed distillation learning for cone beam CT lung tumor segmentation. Jiang J; Riyahi Alam S; Chen I; Zhang P; Rimner A; Deasy JO; Veeraraghavan H Med Phys; 2021 Jul; 48(7):3702-3713. PubMed ID: 33905558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]