These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 34395315)

  • 1. Reductive Power Generated by
    Rosa TLSA; Marques MAM; DeBoard Z; Hutchins K; Silva CAA; Montague CR; Yuan T; Amaral JJ; Atella GC; Rosa PS; Mattos KA; VanderVen BC; Lahiri R; Sampson NS; Brennan PJ; Belisle JT; Pessolani MCV; Berrêdo-Pinho M
    Front Cell Infect Microbiol; 2021; 11():709972. PubMed ID: 34395315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Essential Role of Cholesterol Metabolism in the Intracellular Survival of Mycobacterium leprae Is Not Coupled to Central Carbon Metabolism and Energy Production.
    Marques MA; Berrêdo-Pinho M; Rosa TL; Pujari V; Lemes RM; Lery LM; Silva CA; Guimarães AC; Atella GC; Wheat WH; Brennan PJ; Crick DC; Belisle JT; Pessolani MC
    J Bacteriol; 2015 Dec; 197(23):3698-707. PubMed ID: 26391209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TLR6-driven lipid droplets in Mycobacterium leprae-infected Schwann cells: immunoinflammatory platforms associated with bacterial persistence.
    Mattos KA; Oliveira VG; D'Avila H; Rodrigues LS; Pinheiro RO; Sarno EN; Pessolani MC; Bozza PT
    J Immunol; 2011 Sep; 187(5):2548-58. PubMed ID: 21813774
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Chavarro-Portillo B; Soto CY; Guerrero MI
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes.
    Mattos KA; Lara FA; Oliveira VG; Rodrigues LS; D'Avila H; Melo RC; Manso PP; Sarno EN; Bozza PT; Pessolani MC
    Cell Microbiol; 2011 Feb; 13(2):259-73. PubMed ID: 20955239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Corrigendum: Reductive Power Generated by
    Rosa TLSA; Marques MAM; DeBoard Z; Hutchins K; Silva CAA; Montague CR; Yuan T; Amaral JJ; Atella GC; Rosa PS; Mattos KA; VanderVen BC; Lahiri R; Sampson NS; Brennan PJ; Belisle JT; Pessolani MCV; Berrêdo-Pinho M
    Front Cell Infect Microbiol; 2021; 11():765326. PubMed ID: 34650934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenolic glycolipid-1 of Mycobacterium leprae is involved in human Schwann cell line ST8814 neurotoxic phenotype.
    Girardi KDCV; Mietto BS; Dos Anjos Lima K; Atella GC; da Silva DS; Pereira AMR; Rosa PS; Lara FA
    J Neurochem; 2023 Jan; 164(2):158-171. PubMed ID: 36349509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PGL I expression in live bacteria allows activation of a CD206/PPARγ cross-talk that may contribute to successful Mycobacterium leprae colonization of peripheral nerves.
    Díaz Acosta CC; Dias AA; Rosa TLSA; Batista-Silva LR; Rosa PS; Toledo-Pinto TG; Costa FDMR; Lara FA; Rodrigues LS; Mattos KA; Sarno EN; Bozza PT; Guilhot C; de Berrêdo-Pinho M; Pessolani MCV
    PLoS Pathog; 2018 Jul; 14(7):e1007151. PubMed ID: 29979790
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The formation of lipid droplets favors intracellular Mycobacterium leprae survival in SW-10, non-myelinating Schwann cells.
    Jin SH; An SK; Lee SB
    PLoS Negl Trop Dis; 2017 Jun; 11(6):e0005687. PubMed ID: 28636650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adenosine A
    Dos Santos PMF; Díaz Acosta CC; Rosa TLSA; Ishiba MH; Dias AA; Pereira AMR; Gutierres LD; Pereira MP; da Silva Rocha M; Rosa PS; Bertoluci DFF; Meyer-Fernandes JR; da Mota Ramalho Costa F; Marques MAM; Belisle JT; Pinheiro RO; Rodrigues LS; Pessolani MCV; Berrêdo-Pinho M
    Front Pharmacol; 2024; 15():1399363. PubMed ID: 39005937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competency of human-derived Mycobacterium leprae to use palmitic acid in the synthesis of phenolic glycolipid-I and phthiocerol dimycocerosate and to release CO2 in axenic culture.
    Shannon EJ; Harris EB; Haile-Mariam HS; Guebre-Xavier M; Frommel D
    Lepr Rev; 1992 Jun; 63(2):101-7. PubMed ID: 1640777
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Ojo O; Williams DL; Adams LB; Lahiri R
    Front Cell Infect Microbiol; 2021; 11():817221. PubMed ID: 35096659
    [No Abstract]   [Full Text] [Related]  

  • 13. Expression profile of Rab5, Rab7, tryptophan aspartate-containing coat protein, leprae lipoarabinomannan, and phenolic glycolipid-1 on the failure of the phagolysosome process in macrophages of leprosy patients as a viability marker of Mycobacterium leprae.
    Prakoeswa CR; Wahyuni R; Iswahyudi ; Adriaty D; Yusuf I; Sutjipto ; Agusni I; Izumi S
    Int J Mycobacteriol; 2016 Jun; 5(2):155-63. PubMed ID: 27242226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the contribution of lipid droplets in leprosy: multifunctional organelles with roles in Mycobacterium leprae pathogenesis.
    de Mattos KA; Sarno EN; Pessolani MC; Bozza PT
    Mem Inst Oswaldo Cruz; 2012 Dec; 107 Suppl 1():156-66. PubMed ID: 23283467
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Mycobacterium leprae phenolic glycolipid I (PGL-I) in serodiagnosis and in the pathogenesis of leprosy.
    Spencer JS; Brennan PJ
    Lepr Rev; 2011 Dec; 82(4):344-57. PubMed ID: 22439275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterium leprae intracellular survival relies on cholesterol accumulation in infected macrophages: a potential target for new drugs for leprosy treatment.
    Mattos KA; Oliveira VC; Berrêdo-Pinho M; Amaral JJ; Antunes LC; Melo RC; Acosta CC; Moura DF; Olmo R; Han J; Rosa PS; Almeida PE; Finlay BB; Borchers CH; Sarno EN; Bozza PT; Atella GC; Pessolani MC
    Cell Microbiol; 2014 Jun; 16(6):797-815. PubMed ID: 24552180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathogenicity and virulence of
    Sugawara-Mikami M; Tanigawa K; Kawashima A; Kiriya M; Nakamura Y; Fujiwara Y; Suzuki K
    Virulence; 2022 Dec; 13(1):1985-2011. PubMed ID: 36326715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for natural antibody in the pathogenesis of leprosy: antibody in nonimmune serum mediates C3 fixation to the Mycobacterium leprae surface and hence phagocytosis by human mononuclear phagocytes.
    Schlesinger LS; Horwitz MA
    Infect Immun; 1994 Jan; 62(1):280-9. PubMed ID: 8262640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid Droplets and Mycobacterium leprae Infection.
    Elamin AA; Stehr M; Singh M
    J Pathog; 2012; 2012():361374. PubMed ID: 23209912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New insights into the pathogenesis of leprosy: contribution of subversion of host cell metabolism to bacterial persistence, disease progression, and transmission.
    de Macedo CS; Lara FA; Pinheiro RO; Schmitz V; de Berrêdo-Pinho M; Pereira GM; Pessolani MCV
    F1000Res; 2020; 9():. PubMed ID: 32051758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.