These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 34395397)
1. Instant Chen H; Zhang H; Shen Y; Dai X; Wang X; Deng K; Long X; Liu L; Zhang X; Li Y; Xu T Front Bioeng Biotechnol; 2021; 9():684105. PubMed ID: 34395397 [No Abstract] [Full Text] [Related]
2. Photothermal Sensitive 3D Printed Biodegradable Polyester Scaffolds with Polydopamine Coating for Bone Tissue Engineering. Huang Z; Li J; Chen X; Yang Q; Zeng X; Bai R; Wang L Polymers (Basel); 2023 Jan; 15(2):. PubMed ID: 36679260 [TBL] [Abstract][Full Text] [Related]
3. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering. Hoveizi E; Nabiuni M; Parivar K; Rajabi-Zeleti S; Tavakol S Cell Biol Int; 2014 Jan; 38(1):41-9. PubMed ID: 24030862 [TBL] [Abstract][Full Text] [Related]
4. Mesenchymal stem cells growth and proliferation enhancement using PLA vs PCL based nanofibrous scaffolds. Marei NH; El-Sherbiny IM; Lotfy A; El-Badawy A; El-Badri N Int J Biol Macromol; 2016 Dec; 93(Pt A):9-19. PubMed ID: 27554939 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
6. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Yao Q; Cosme JG; Xu T; Miszuk JM; Picciani PH; Fong H; Sun H Biomaterials; 2017 Jan; 115():115-127. PubMed ID: 27886552 [TBL] [Abstract][Full Text] [Related]
7. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268 [TBL] [Abstract][Full Text] [Related]
9. 3D Printing and Solvent Dissolution Recycling of Polylactide-Lunar Regolith Composites by Material Extrusion Approach. Li H; Zhao W; Wu X; Tang H; Li Q; Tan J; Wang G Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32752042 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of cockle shell aragonite nanocomposite porous 3D scaffolds for bone repair. Mahmood SK; Zakaria MZAB; Razak ISBA; Yusof LM; Jaji AZ; Tijani I; Hammadi NI Biochem Biophys Rep; 2017 Jul; 10():237-251. PubMed ID: 28955752 [TBL] [Abstract][Full Text] [Related]
11. In Situ Printing of Polylactic Acid/Nanoceramic Filaments for the Repair of Bone Defects Using a Portable 3D Device. Brito GC; Sousa GF; Santana MV; Aguiar Furtado AS; E Silva MCS; Lima Verde TFC; Barbosa R; Alves TS; Reis Vasconcellos LM; Sobral Silva LA; Freitas Viana VG; Figueredo-Silva J; Maia Filho ALM; Marciano FR; Lobo AO ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39033545 [No Abstract] [Full Text] [Related]
12. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method. Gautam S; Dinda AK; Mishra NC Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1228-35. PubMed ID: 23827565 [TBL] [Abstract][Full Text] [Related]
13. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related]
14. A UV-cured nanofibrous membrane of vinylbenzylated gelatin-poly(ɛ-caprolactone) dimethacrylate co-network by scalable free surface electrospinning. Bazbouz MB; Liang H; Tronci G Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():541-555. PubMed ID: 30033285 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and evaluation of poly(epsilon-caprolactone)/silk fibroin blend nanofibrous scaffold. Lim JS; Ki CS; Kim JW; Lee KG; Kang SW; Kweon HY; Park YH Biopolymers; 2012 May; 97(5):265-75. PubMed ID: 22169927 [TBL] [Abstract][Full Text] [Related]
16. Study on the Electrospinning of Gelatin/Pullulan Composite Nanofibers. Wang Y; Guo Z; Qian Y; Zhang Z; Lyu L; Wang Y; Ye F Polymers (Basel); 2019 Aug; 11(9):. PubMed ID: 31480275 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds. Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097 [TBL] [Abstract][Full Text] [Related]
18. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
19. Mechanical Properties and In Vitro Evaluation of Thermoplastic Polyurethane and Polylactic Acid Blend for Fabrication of 3D Filaments for Tracheal Tissue Engineering. Abdul Samat A; Abdul Hamid ZA; Jaafar M; Yahaya BH Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34577988 [TBL] [Abstract][Full Text] [Related]
20. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers. Xiong X; Li Q; Lu JW; Guo ZX; Sun ZH; Yu J J Biomater Sci Polym Ed; 2012; 23(9):1217-30. PubMed ID: 21639995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]