These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 34395398)

  • 1. The Influence of Kinematic Constraints on Model Performance During Inverse Kinematics Analysis of the Thoracolumbar Spine.
    Alemi MM; Burkhart KA; Lynch AC; Allaire BT; Mousavi SJ; Zhang C; Bouxsein ML; Anderson DE
    Front Bioeng Biotechnol; 2021; 9():688041. PubMed ID: 34395398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinematic evaluation of one- and two-level Maverick lumbar total disc replacement caudal to a long thoracolumbar spinal fusion.
    Zhu Q; Itshayek E; Jones CF; Schwab T; Larson CR; Lenke LG; Cripton PA
    Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S599-611. PubMed ID: 22531900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo three-dimensional intervertebral kinematics of the subaxial cervical spine during seated axial rotation and lateral bending via a fluoroscopy-to-CT registration approach.
    Lin CC; Lu TW; Wang TM; Hsu CY; Hsu SJ; Shih TF
    J Biomech; 2014 Oct; 47(13):3310-7. PubMed ID: 25218506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoracic spinal kinematics is affected by the grade of intervertebral disc degeneration, but not by the presence of the ribs: An in vitro study.
    Liebsch C; Jonas R; Wilke HJ
    Spine J; 2020 Mar; 20(3):488-498. PubMed ID: 31654810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinematics of the thoracic spine in trunk lateral bending: in vivo three-dimensional analysis.
    Fujimori T; Iwasaki M; Nagamoto Y; Matsuo Y; Ishii T; Sugiura T; Kashii M; Murase T; Sugamoto K; Yoshikawa H
    Spine J; 2014 Sep; 14(9):1991-9. PubMed ID: 24333460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A preliminary modelling study on the equine cervical spine with inverse kinematics at walk.
    Zsoldos RR; Groesel M; Kotschwar A; Kotschwar AB; Licka T; Peham C
    Equine Vet J Suppl; 2010 Nov; (38):516-22. PubMed ID: 21059054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disc arthroplasty design influences intervertebral kinematics and facet forces.
    Rousseau MA; Bradford DS; Bertagnoli R; Hu SS; Lotz JC
    Spine J; 2006; 6(3):258-66. PubMed ID: 16651219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.
    Mousavi SJ; Tromp R; Swann MC; White AP; Anderson DE
    J Biomech; 2018 Oct; 79():248-252. PubMed ID: 30213648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influences of functional structures on the kinematic behavior of the cervical spine.
    Jonas R; Demmelmaier R; Wilke HJ
    Spine J; 2020 Dec; 20(12):2014-2024. PubMed ID: 32768654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals.
    Ghasemi M; Arjmand N
    J Biomech; 2021 Jun; 123():110539. PubMed ID: 34044195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine. A canine model study.
    Takeuchi T; Abumi K; Shono Y; Oda I; Kaneda K
    Spine (Phila Pa 1976); 1999 Jul; 24(14):1414-20. PubMed ID: 10423785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cervical motion segment contributions to head motion during flexion\extension, lateral bending, and axial rotation.
    Anderst WJ; Donaldson WF; Lee JY; Kang JD
    Spine J; 2015 Dec; 15(12):2538-43. PubMed ID: 26334229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo 3D kinematic changes in the cervical spine after laminoplasty for cervical spondylotic myelopathy.
    Nagamoto Y; Iwasaki M; Sugiura T; Fujimori T; Matsuo Y; Kashii M; Sakaura H; Ishii T; Murase T; Yoshikawa H; Sugamoto K
    J Neurosurg Spine; 2014 Sep; 21(3):417-24. PubMed ID: 24926932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sacroiliac joint motion in patients with degenerative lumbar spine disorders.
    Nagamoto Y; Iwasaki M; Sakaura H; Sugiura T; Fujimori T; Matsuo Y; Kashii M; Murase T; Yoshikawa H; Sugamoto K
    J Neurosurg Spine; 2015 Aug; 23(2):209-16. PubMed ID: 25978076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dynamic Optimization Approach for Solving Spine Kinematics While Calibrating Subject-Specific Mechanical Properties.
    Wang W; Wang D; Falisse A; Severijns P; Overbergh T; Moke L; Scheys L; De Groote F; Jonkers I
    Ann Biomed Eng; 2021 Sep; 49(9):2311-2322. PubMed ID: 33851322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical comparison of single- and two-level cervical arthroplasty versus arthrodesis: effect on adjacent-level spinal kinematics.
    Cunningham BW; Hu N; Zorn CM; McAfee PC
    Spine J; 2010 Apr; 10(4):341-9. PubMed ID: 20362252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [In vivo measurement of three-dimensional motion of the upper cervical spine using CT three-dimensional reconstruction].
    Zhai X; Kang J; Chen X; Dong J; Qiu XW; Ding XA; Liu J; He XJ
    Zhongguo Gu Shang; 2019 Jul; 32(7):658-665. PubMed ID: 31382726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subject-Specific Spino-Pelvic Models Reliably Measure Spinal Kinematics During Seated Forward Bending in Adult Spinal Deformity.
    Overbergh T; Severijns P; Beaucage-Gauvreau E; Ackermans T; Moke L; Jonkers I; Scheys L
    Front Bioeng Biotechnol; 2021; 9():720060. PubMed ID: 34540815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the Neutral Zone of sheep intervertebral joints during dynamic motions: an in vitro study.
    Thompson RE; Barker TM; Pearcy MJ
    Clin Biomech (Bristol, Avon); 2003 Feb; 18(2):89-98. PubMed ID: 12550806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study.
    Fujiwara A; An HS; Lim TH; Haughton VM
    Spine (Phila Pa 1976); 2001 Apr; 26(8):876-82. PubMed ID: 11317109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.