BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34395473)

  • 1. An Overview of Novel Agents for Cervical Cancer Treatment by Inducing Apoptosis: Emerging Drugs Ongoing Clinical Trials and Preclinical Studies.
    Liu L; Wang M; Li X; Yin S; Wang B
    Front Med (Lausanne); 2021; 8():682366. PubMed ID: 34395473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clinical potential of inhibitors of survival pathways and activators of apoptotic pathways in treatment of cervical cancer: changing the apoptotic balance.
    Hougardy BM; Maduro JH; van der Zee AG; Willemse PH; de Jong S; de Vries EG
    Lancet Oncol; 2005 Aug; 6(8):589-98. PubMed ID: 16054570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Management of patients with recurrent/advanced cervical cancer beyond first line platinum regimens: Where do we stand? A literature review.
    Boussios S; Seraj E; Zarkavelis G; Petrakis D; Kollas A; Kafantari A; Assi A; Tatsi K; Pavlidis N; Pentheroudakis G
    Crit Rev Oncol Hematol; 2016 Dec; 108():164-174. PubMed ID: 27931835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The need for improvement of the treatment of advanced and metastatic cervical cancer, the rationale for combined chemo-immunotherapy.
    van Meir H; Kenter GG; Burggraaf J; Kroep JR; Welters MJ; Melief CJ; van der Burg SH; van Poelgeest MI
    Anticancer Agents Med Chem; 2014 Feb; 14(2):190-203. PubMed ID: 24237223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Roles of Programmed Cell Death Ligand-1/ Programmed Cell Death-1 (PD-L1/PD-1) in HPV-induced Cervical Cancer and Potential for their Use in Blockade Therapy.
    Zhang L; Zhao Y; Tu Q; Xue X; Zhu X; Zhao KN
    Curr Med Chem; 2021; 28(5):893-909. PubMed ID: 32003657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy.
    Pérez-Herrero E; Fernández-Medarde A
    Eur J Pharm Biopharm; 2015 Jun; 93():52-79. PubMed ID: 25813885
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Editorial: Current status and perspective on drug targets in tubercle bacilli and drug design of antituberculous agents based on structure-activity relationship.
    Tomioka H
    Curr Pharm Des; 2014; 20(27):4305-6. PubMed ID: 24245755
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New pharmacotherapy options for cervical cancer.
    Dueñas-Gonzalez A; Cetina L; Coronel J; Cano C; Dolores R
    Expert Opin Pharmacother; 2014 Jan; 15(1):51-60. PubMed ID: 24206031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigational drugs for the treatment of cervical cancer.
    Barra F; Lorusso D; Leone Roberti Maggiore U; Ditto A; Bogani G; Raspagliesi F; Ferrero S
    Expert Opin Investig Drugs; 2017 Apr; 26(4):389-402. PubMed ID: 28274154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cervical cancer heterogeneity: a constant battle against viruses and drugs.
    Sun Q; Wang L; Zhang C; Hong Z; Han Z
    Biomark Res; 2022 Nov; 10(1):85. PubMed ID: 36397138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of anti HPV vaccination on cervical cancer incidence and HPV induced cervical lesions: consequences for clinical management.
    Brinkman JA; Caffrey AS; Muderspach LI; Roman LD; Kast WM
    Eur J Gynaecol Oncol; 2005; 26(2):129-42. PubMed ID: 15857016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategy for the development of novel anticancer drugs.
    Saijo N; Tamura T; Nishio K
    Cancer Chemother Pharmacol; 2003 Jul; 52 Suppl 1():S97-101. PubMed ID: 12856152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunotherapy in ovarian, endometrial and cervical cancer: State of the art and future perspectives.
    Ventriglia J; Paciolla I; Pisano C; Cecere SC; Di Napoli M; Tambaro R; Califano D; Losito S; Scognamiglio G; Setola SV; Arenare L; Pignata S; Della Pepa C
    Cancer Treat Rev; 2017 Sep; 59():109-116. PubMed ID: 28800469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of Immune Checkpoint Inhibitors in Cervical Cancer: From Preclinical to Clinical Data.
    Duranti S; Pietragalla A; Daniele G; Nero C; Ciccarone F; Scambia G; Lorusso D
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33925884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising new developments in cancer chemotherapy.
    Ferrante K; Winograd B; Canetta R
    Cancer Chemother Pharmacol; 1999; 43 Suppl():S61-8. PubMed ID: 10357561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New drugs in cancer therapy, National Tumor Institute, Naples, 17-18 June 2004.
    Caponigro F; Basile M; de Rosa V; Normanno N
    Anticancer Drugs; 2005 Feb; 16(2):211-21. PubMed ID: 15655420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Breaking down the evidence for bevacizumab in advanced cervical cancer: past, present and future.
    Rodriguez-Freixinos V; Mackay HJ
    Gynecol Oncol Res Pract; 2015; 2():8. PubMed ID: 27231568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted Agents in Cervical Cancer: Beyond Bevacizumab.
    Marquina G; Manzano A; Casado A
    Curr Oncol Rep; 2018 Apr; 20(5):40. PubMed ID: 29611060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cervical Cancer, Different Treatments and Importance of Bile Acids as Therapeutic Agents in This Disease.
    Šarenac T; Mikov M
    Front Pharmacol; 2019; 10():484. PubMed ID: 31214018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.