These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 34395730)

  • 61. Evaluation of the OsTIR1 and AtAFB2 AID Systems for Genome Architectural Protein Degradation in Mammalian Cells.
    Yunusova A; Smirnov A; Shnaider T; Lukyanchikova V; Afonnikova S; Battulin N
    Front Mol Biosci; 2021; 8():757394. PubMed ID: 34805274
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A robust dual gene ON-OFF toggle directed by two independent promoter-degron pairs.
    Yeung TK; Kim S; Ma HT; Poon RYC
    J Cell Sci; 2023 Apr; 136(8):. PubMed ID: 36995025
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Ligand-induced degrons for studying nuclear functions.
    Kanemaki MT
    Curr Opin Cell Biol; 2022 Feb; 74():29-36. PubMed ID: 35065444
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A Simple Combined Use of CRISPR-Cas9 and Cre-LoxP Technologies for Generating Conditional Gene Knockouts in Mammalian Cells.
    Noiman T; Kahana C
    CRISPR J; 2018 Aug; 1():278-285. PubMed ID: 31021220
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Rapid Degradation of
    Martinez MAQ; Kinney BA; Medwig-Kinney TN; Ashley G; Ragle JM; Johnson L; Aguilera J; Hammell CM; Ward JD; Matus DQ
    G3 (Bethesda); 2020 Jan; 10(1):267-280. PubMed ID: 31727633
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion.
    Lin DW; Chung BP; Huang JW; Wang X; Huang L; Kaiser P
    J Biol Chem; 2019 Jul; 294(28):10877-10885. PubMed ID: 31138654
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Quantitative characterization of the auxin-inducible degron: a guide for dynamic protein depletion in single yeast cells.
    Papagiannakis A; de Jonge JJ; Zhang Z; Heinemann M
    Sci Rep; 2017 Jul; 7(1):4704. PubMed ID: 28680098
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Disrupting the male germ line to find infertility and contraception targets.
    Archambeault DR; Matzuk MM
    Ann Endocrinol (Paris); 2014 May; 75(2):101-8. PubMed ID: 24793995
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A Simple Protocol for Loss-of-Function Analysis in Xenopus tropicalis Founders Using the CRISPR-Cas System.
    Sakane Y; Suzuki KT; Yamamoto T
    Methods Mol Biol; 2017; 1630():189-203. PubMed ID: 28643260
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Coupling Auxin-Inducible Degron System with Ultrastructure Expansion Microscopy to Accelerate the Discovery of Gene Function in Toxoplasma gondii.
    Dos Santos Pacheco N; Soldati-Favre D
    Methods Mol Biol; 2021; 2369():121-137. PubMed ID: 34313987
    [TBL] [Abstract][Full Text] [Related]  

  • 71. LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9.
    Beneke T; Gluenz E
    Methods Mol Biol; 2019; 1971():189-210. PubMed ID: 30980304
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Different knockout genotypes of OsIAA23 in rice using CRISPR/Cas9 generating different phenotypes.
    Jiang M; Hu H; Kai J; Traw MB; Yang S; Zhang X
    Plant Mol Biol; 2019 Jul; 100(4-5):467-479. PubMed ID: 31004275
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Auxin-mediated rapid degradation of target proteins in hippocampal neurons.
    Nakano R; Ihara N; Morikawa S; Nakashima A; Kanemaki MT; Ikegaya Y; Takeuchi H
    Neuroreport; 2019 Sep; 30(13):908-913. PubMed ID: 31373971
    [TBL] [Abstract][Full Text] [Related]  

  • 74. CLICK: one-step generation of conditional knockout mice.
    Miyasaka Y; Uno Y; Yoshimi K; Kunihiro Y; Yoshimura T; Tanaka T; Ishikubo H; Hiraoka Y; Takemoto N; Tanaka T; Ooguchi Y; Skehel P; Aida T; Takeda J; Mashimo T
    BMC Genomics; 2018 May; 19(1):318. PubMed ID: 29720086
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Inducible, reversible system for the rapid and complete degradation of proteins in mammalian cells.
    Holland AJ; Fachinetti D; Han JS; Cleveland DW
    Proc Natl Acad Sci U S A; 2012 Dec; 109(49):E3350-7. PubMed ID: 23150568
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Multiplexed CRISPR/Cas9-mediated knockout of 19 Fanconi anemia pathway genes in zebrafish revealed their roles in growth, sexual development and fertility.
    Ramanagoudr-Bhojappa R; Carrington B; Ramaswami M; Bishop K; Robbins GM; Jones M; Harper U; Frederickson SC; Kimble DC; Sood R; Chandrasekharappa SC
    PLoS Genet; 2018 Dec; 14(12):e1007821. PubMed ID: 30540754
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Single-step generation of gene knockout-rescue system in pluripotent stem cells by promoter insertion with CRISPR/Cas9.
    Matsunaga T; Yamashita JK
    Biochem Biophys Res Commun; 2014 Feb; 444(2):158-63. PubMed ID: 24462858
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Efficient Production and Identification of CRISPR/Cas9-generated Gene Knockouts in the Model System Danio rerio.
    Sorlien EL; Witucki MA; Ogas J
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30222157
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rapid Knockout and Reporter Mouse Line Generation and Breeding Colony Establishment Using EUCOMM Conditional-Ready Embryonic Stem Cells: A Case Study.
    Coleman JL; Brennan K; Ngo T; Balaji P; Graham RM; Smith NJ
    Front Endocrinol (Lausanne); 2015; 6():105. PubMed ID: 26175717
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells.
    Kim H; Li F; He Q; Deng T; Xu J; Jin F; Coarfa C; Putluri N; Liu D; Songyang Z
    Cell Discov; 2017; 3():17034. PubMed ID: 28955502
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.