BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34395744)

  • 41. Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein.
    Bianco C; Normanno N; De Luca A; Maiello MR; Wechselberger C; Sun Y; Khan N; Adkins H; Sanicola M; Vonderhaar B; Cohen B; Seno M; Salomon D
    J Cell Physiol; 2002 Jan; 190(1):74-82. PubMed ID: 11807813
    [TBL] [Abstract][Full Text] [Related]  

  • 42. CD24 staining of mouse mammary gland cells defines luminal epithelial, myoepithelial/basal and non-epithelial cells.
    Sleeman KE; Kendrick H; Ashworth A; Isacke CM; Smalley MJ
    Breast Cancer Res; 2006; 8(1):R7. PubMed ID: 16417656
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Methods for preparing fluorescent and neutral red-stained whole mounts of mouse mammary glands.
    Landua JD; Visbal AP; Lewis MT
    J Mammary Gland Biol Neoplasia; 2009 Dec; 14(4):411-5. PubMed ID: 19936989
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neuropilin-2 promotes branching morphogenesis in the mouse mammary gland.
    Goel HL; Bae D; Pursell B; Gouvin LM; Lu S; Mercurio AM
    Development; 2011 Jul; 138(14):2969-76. PubMed ID: 21693513
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Age-related changes in the epithelial and stromal compartments of the mammary gland in normocalcemic mice lacking the vitamin D3 receptor.
    Welsh J; Zinser LN; Mianecki-Morton L; Martin J; Waltz SE; James H; Zinser GM
    PLoS One; 2011 Jan; 6(1):e16479. PubMed ID: 21298063
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.
    Fata JE; Werb Z; Bissell MJ
    Breast Cancer Res; 2004; 6(1):1-11. PubMed ID: 14680479
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Key stages in mammary gland development: the cues that regulate ductal branching morphogenesis.
    Sternlicht MD
    Breast Cancer Res; 2006; 8(1):201. PubMed ID: 16524451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A matrisome RNA signature from early-pregnancy mouse mammary fibroblasts predicts distant metastasis-free breast cancer survival in humans.
    Ibrahim AM; Bilsland A; Rickelt S; Morris JS; Stein T
    Breast Cancer Res; 2021 Sep; 23(1):90. PubMed ID: 34565423
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of mammary gland development and function in mouse models.
    Plante I; Stewart MK; Laird DW
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21808224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Loss of SFRP1 promotes ductal branching in the murine mammary gland.
    Gauger KJ; Shimono A; Crisi GM; Schneider SS
    BMC Dev Biol; 2012 Aug; 12():25. PubMed ID: 22928951
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Loss of Alx4, a stromally-restricted homeodomain protein, impairs mammary epithelial morphogenesis.
    Joshi PA; Chang H; Hamel PA
    Dev Biol; 2006 Sep; 297(1):284-94. PubMed ID: 16916507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hormonal and local control of mammary branching morphogenesis.
    Sternlicht MD; Kouros-Mehr H; Lu P; Werb Z
    Differentiation; 2006 Sep; 74(7):365-81. PubMed ID: 16916375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Transcriptional regulation of vascular endothelial growth factor expression in epithelial and stromal cells during mouse mammary gland development.
    Hovey RC; Goldhar AS; Baffi J; Vonderhaar BK
    Mol Endocrinol; 2001 May; 15(5):819-31. PubMed ID: 11328861
    [TBL] [Abstract][Full Text] [Related]  

  • 54. P190-B Rho GTPase-activating protein overexpression disrupts ductal morphogenesis and induces hyperplastic lesions in the developing mammary gland.
    Vargo-Gogola T; Heckman BM; Gunther EJ; Chodosh LA; Rosen JM
    Mol Endocrinol; 2006 Jun; 20(6):1391-405. PubMed ID: 16469769
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of mouse mammary gland imaging techniques and applications: reflectance confocal microscopy, GFP imaging, and ultrasound.
    Tilli MT; Parrish AR; Cotarla I; Jones LP; Johnson MD; Furth PA
    BMC Cancer; 2008 Jan; 8():21. PubMed ID: 18215290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Transplanted mammary epithelium grows in association with host stroma: aging of serially transplanted mammary gland is intrinsic to epithelial cells.
    Daniel CW; Shannon JM; Cunha GR
    Mech Ageing Dev; 1983; 23(3-4):259-64. PubMed ID: 6656310
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The development of the terminal end bud in the prepubertal-pubertal mouse mammary gland.
    Ball SM
    Anat Rec; 1998 Apr; 250(4):459-64. PubMed ID: 9566536
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Imaging the mammary gland and mammary tumours in 3D: optical tissue clearing and immunofluorescence methods.
    Lloyd-Lewis B; Davis FM; Harris OB; Hitchcock JR; Lourenco FC; Pasche M; Watson CJ
    Breast Cancer Res; 2016 Dec; 18(1):127. PubMed ID: 27964754
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Preparation of epithelial and mesenchymal stem cells from murine mammary gland.
    Guest I; Ilic Z; Ma J
    Curr Protoc Toxicol; 2011 Nov; Chapter 22():Unit22.3. PubMed ID: 22058055
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Preparation of an epithelium-free mammary fat pad and subsequent mammogenesis in ewes.
    Hovey RC; Auldist DE; Mackenzie DD; McFadden TB
    J Anim Sci; 2000 Aug; 78(8):2177-85. PubMed ID: 10947106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.