These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 34395983)
1. Tailored Synthesis of Iron Oxide Nanocrystals for Formation of Cuboid Mesocrystals. Soran-Erdem Z; Sharma VK; Hernandez-Martinez PL; Demir HV ACS Omega; 2021 Aug; 6(31):20351-20360. PubMed ID: 34395983 [TBL] [Abstract][Full Text] [Related]
2. Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Wetterskog E; Agthe M; Mayence A; Grins J; Wang D; Rana S; Ahniyaz A; Salazar-Alvarez G; Bergström L Sci Technol Adv Mater; 2014 Oct; 15(5):055010. PubMed ID: 27877722 [TBL] [Abstract][Full Text] [Related]
3. Self-Assembly of Colloidal Nanocrystals into 3D Binary Mesocrystals. Ni B; Gonzalez-Rubio G; Cölfen H Acc Chem Res; 2022 Jun; 55(12):1599-1608. PubMed ID: 35679581 [TBL] [Abstract][Full Text] [Related]
4. Tuning the structure and habit of iron oxide mesocrystals. Wetterskog E; Klapper A; Disch S; Josten E; Hermann RP; Rücker U; Brückel T; Bergström L; Salazar-Alvarez G Nanoscale; 2016 Aug; 8(34):15571-80. PubMed ID: 27448065 [TBL] [Abstract][Full Text] [Related]
5. Two-Stage Assembly of Mesocrystal Fibers with Tunable Diameters in Weak Magnetic Fields. Kapuscinski M; Munier P; Segad M; Bergström L Nano Lett; 2020 Oct; 20(10):7359-7366. PubMed ID: 32924498 [TBL] [Abstract][Full Text] [Related]
6. Cubic Mesocrystal Magnetic Iron Oxide Nanoparticle Formation by Oriented Aggregation of Cubes in Organic Media: A Rational Design to Enhance the Magnetic Hyperthermia Efficiency. Egea-Benavente D; Díaz-Ufano C; Gallo-Cordova Á; Palomares FJ; Cuya Huaman JL; Barber DF; Morales MDP; Balachandran J ACS Appl Mater Interfaces; 2023 Jul; 15(27):32162-32176. PubMed ID: 37390112 [TBL] [Abstract][Full Text] [Related]
7. Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy. Brunner JJ; Krumova M; Cölfen H; Sturm Née Rosseeva EV Beilstein J Nanotechnol; 2019; 10():894-900. PubMed ID: 31165016 [TBL] [Abstract][Full Text] [Related]
8. Precise Size Control of the Growth of Fe Muro-Cruces J; Roca AG; López-Ortega A; Fantechi E; Del-Pozo-Bueno D; Estradé S; Peiró F; Sepúlveda B; Pineider F; Sangregorio C; Nogues J ACS Nano; 2019 Jul; 13(7):7716-7728. PubMed ID: 31173684 [TBL] [Abstract][Full Text] [Related]
9. Strong size selectivity in the self-assembly of rounded nanocubes into 3D mesocrystals. Josten E; Angst M; Glavic A; Zakalek P; Rücker U; Seeck OH; Kovács A; Wetterskog E; Kentzinger E; Dunin-Borkowski RE; Bergström L; Brückel T Nanoscale Horiz; 2020 Jul; 5(7):1065-1072. PubMed ID: 32542274 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the influence of synthetic paramaters on the structure and physico-chemical properties of non-spherical iron oxide nanocrystals and their biological stability and compatibility. Pardo A; Pujales R; Blanco M; Villar-Alvarez EM; Barbosa S; Taboada P; Mosquera V Dalton Trans; 2016 Jan; 45(2):797-810. PubMed ID: 26647232 [TBL] [Abstract][Full Text] [Related]
13. Mesocrystals in Biominerals and Colloidal Arrays. Bergström L; Sturm née Rosseeva EV; Salazar-Alvarez G; Cölfen H Acc Chem Res; 2015 May; 48(5):1391-402. PubMed ID: 25938915 [TBL] [Abstract][Full Text] [Related]
14. 3D Binary Mesocrystals from Anisotropic Nanoparticles. Jenewein C; Avaro J; Appel C; Liebi M; Cölfen H Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202112461. PubMed ID: 34669241 [TBL] [Abstract][Full Text] [Related]
15. A new strategy for the synthesis of iron-oxide nanocrystals by using a single-spinneret electrospinning technique. Xu GR; Wang JN; Li CJ Chem Asian J; 2013 Oct; 8(10):2453-8. PubMed ID: 23857954 [TBL] [Abstract][Full Text] [Related]
16. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. Guardia P; Riedinger A; Nitti S; Pugliese G; Marras S; Genovese A; Materia ME; Lefevre C; Manna L; Pellegrino T J Mater Chem B; 2014 Jul; 2(28):4426-4434. PubMed ID: 32261543 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of spherical and cubic magnetic iron oxide nanocrystals at low temperature in air. Park B; Kim BH; Yu T J Colloid Interface Sci; 2018 May; 518():27-33. PubMed ID: 29438861 [TBL] [Abstract][Full Text] [Related]
18. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism. Jiang C; Leung CW; Pong PW Nanoscale Res Lett; 2016 Dec; 11(1):189. PubMed ID: 27067737 [TBL] [Abstract][Full Text] [Related]
19. Confining Iron Oxide Nanocubes inside Submicrometric Cavities as a Key Strategy To Preserve Magnetic Heat Losses in an Intracellular Environment. Zyuzin MV; Cassani M; Barthel MJ; Gavilan H; Silvestri N; Escudero A; Scarpellini A; Lucchesi F; Teran FJ; Parak WJ; Pellegrino T ACS Appl Mater Interfaces; 2019 Nov; 11(45):41957-41971. PubMed ID: 31584801 [TBL] [Abstract][Full Text] [Related]
20. Exploring the 3D structure and defects of a self-assembled gold mesocrystal by coherent X-ray diffraction imaging. Carnis J; Kirner F; Lapkin D; Sturm S; Kim YY; Baburin IA; Khubbutdinov R; Ignatenko A; Iashina E; Mistonov A; Steegemans T; Wieck T; Gemming T; Lubk A; Lazarev S; Sprung M; Vartanyants IA; Sturm EV Nanoscale; 2021 Jun; 13(23):10425-10435. PubMed ID: 34028473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]