BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34395994)

  • 1. Theoretical Study on the Unimolecular Pyrolysis of Thiophene and Modeling.
    Li T; Zhang H; Li Y; Li J; Wang J; Xiao J
    ACS Omega; 2021 Aug; 6(31):20471-20482. PubMed ID: 34395994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical insight into the formation of H
    Liu J; Fan XR; Zhao W; Yang SW; Hu B; Yang SG; Lu Q
    Chemosphere; 2021 Sep; 279():130628. PubMed ID: 34134421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Oil Shale Pyrolysis: High-Temperature Unimolecular Decomposition Pathways for Thiophene.
    Vasiliou AK; Hu H; Cowell TW; Whitman JC; Porterfield J; Parish CA
    J Phys Chem A; 2017 Oct; 121(40):7655-7666. PubMed ID: 28910105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolysis mechanisms of thiophene and methylthiophene in asphaltenes.
    Song X; Parish CA
    J Phys Chem A; 2011 Apr; 115(13):2882-91. PubMed ID: 21410188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis of tert-butyl tert-butanethiosulfinate, t-BuS(O)St-Bu: a computational perspective of the decomposition pathways.
    Mondal B; Mandal D; Das AK
    J Phys Chem A; 2011 Apr; 115(14):3068-78. PubMed ID: 21417300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic modeling of methyl pentanoate pyrolysis based on ab initio calculations.
    Shang Y; Ning H; Shi J; Luo SN
    Phys Chem Chem Phys; 2020 Aug; 22(32):17978-17986. PubMed ID: 32749410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DFT Research on Benzothiophene Pyrolysis Reaction Mechanism.
    Li T; Li J; Zhang H; Sun K; Xiao J
    J Phys Chem A; 2019 Jan; 123(4):796-810. PubMed ID: 30601656
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.
    Peukert SL; Labbe NJ; Sivaramakrishnan R; Michael JV
    J Phys Chem A; 2013 Oct; 117(40):10228-38. PubMed ID: 23968575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OH-Initiated Reactions of
    Hudzik JM; Bozzelli JW; Asatryan R; Ruckenstein E
    J Phys Chem A; 2020 Jun; 124(24):4905-4915. PubMed ID: 32432474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. OH-Initiated Reactions of
    Hudzik JM; Barekati-Goudarzi M; Khachatryan L; Bozzelli JW; Ruckenstein E; Asatryan R
    J Phys Chem A; 2020 Jun; 124(24):4875-4904. PubMed ID: 32432475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of Cyclopentadienone: Mechanistic Insights from a Direct Measurement of Product Branching Ratios.
    Ormond TK; Scheer AM; Nimlos MR; Robichaud DJ; Troy TP; Ahmed M; Daily JW; Nguyen TL; Stanton JF; Ellison GB
    J Phys Chem A; 2015 Jul; 119(28):7222-34. PubMed ID: 25608038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-level ab initio predictions for the ionization energies and heats of formation of five-membered-ring molecules: thiophene, furan, pyrrole, 1,3-cyclopentadiene, and borole, C4H4X/C4H4X+ (X = S, O, NH, CH2, and BH).
    Lo PK; Lau KC
    J Phys Chem A; 2011 Feb; 115(5):932-9. PubMed ID: 21210670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pyrolysis of 2-methylfuran: a quantum chemical, statistical rate theory and kinetic modelling study.
    Somers KP; Simmie JM; Metcalfe WK; Curran HJ
    Phys Chem Chem Phys; 2014 Mar; 16(11):5349-67. PubMed ID: 24496403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical study of the C6H3 potential energy surface and rate constants and product branching ratios of the C2H(2Sigma+) + C4H2(1Sigma(g)+) and C4H(2Sigma+) + C2H2(1Sigma(g)+) reactions.
    Landera A; Krishtal SP; Kislov VV; Mebel AM; Kaiser RI
    J Chem Phys; 2008 Jun; 128(21):214301. PubMed ID: 18537416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theory of multichannel thermal unimolecular reactions. 2. Application to the thermal dissociation of formaldehyde.
    Troe J
    J Phys Chem A; 2005 Sep; 109(37):8320-8. PubMed ID: 16834222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism Insight into the Conversion between H
    Xian S; Xu Q; Li H
    ACS Omega; 2023 Sep; 8(37):33982-33996. PubMed ID: 37744841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A two-layer ONIOM study of thiophene cracking catalyzed by proton- and cation-exchanged FAU zeolite.
    Sun Y; Mao X; Pei S
    J Mol Model; 2016 Feb; 22(2):51. PubMed ID: 26841976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theoretical Kinetic Study of the Unimolecular Keto-Enol Tautomerism Propen-2-ol ↔ Acetone. Pressure Effects and Implications in the Pyrolysis of tert- and 2-Butanol.
    Grajales-González E; Monge-Palacios M; Sarathy SM
    J Phys Chem A; 2018 Apr; 122(14):3547-3555. PubMed ID: 29558796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical Investigation of the Mechanisms and Kinetics of the Bimolecular and Unimolecular Reactions Involving in the C
    Pham TV; Tue Trang HT
    J Phys Chem A; 2021 Jan; 125(2):585-596. PubMed ID: 33412848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combination Reactions of Propargyl Radical with Hydroxyl Radical and the Isomerization and Dissociation of
    Pham TV; Tue Trang HT
    J Phys Chem A; 2020 Jul; 124(30):6144-6157. PubMed ID: 32634312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.