These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 34396389)
1. A systematic comparison of data- and knowledge-driven approaches to disease subtype discovery. Rintala TJ; Federico A; Latonen L; Greco D; Fortino V Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34396389 [TBL] [Abstract][Full Text] [Related]
2. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms. Rintala TJ; Fortino V PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448 [TBL] [Abstract][Full Text] [Related]
3. Clustering approaches for visual knowledge exploration in molecular interaction networks. Ostaszewski M; Kieffer E; Danoy G; Schneider R; Bouvry P BMC Bioinformatics; 2018 Aug; 19(1):308. PubMed ID: 30157777 [TBL] [Abstract][Full Text] [Related]
4. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management. Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154 [TBL] [Abstract][Full Text] [Related]
5. A network-assisted co-clustering algorithm to discover cancer subtypes based on gene expression. Liu Y; Gu Q; Hou JP; Han J; Ma J BMC Bioinformatics; 2014 Feb; 15():37. PubMed ID: 24491042 [TBL] [Abstract][Full Text] [Related]
6. FREQUENT SUBGRAPH MINING OF PERSONALIZED SIGNALING PATHWAY NETWORKS GROUPS PATIENTS WITH FREQUENTLY DYSREGULATED DISEASE PATHWAYS AND PREDICTS PROGNOSIS. Durmaz A; Henderson TAD; Brubaker D; Bebek G Pac Symp Biocomput; 2017; 22():402-413. PubMed ID: 27896993 [TBL] [Abstract][Full Text] [Related]
7. ClusterMine: A knowledge-integrated clustering approach based on expression profiles of gene sets. Li HD; Xu Y; Zhu X; Liu Q; Omenn GS; Wang J J Bioinform Comput Biol; 2020 Jun; 18(3):2040009. PubMed ID: 32698720 [TBL] [Abstract][Full Text] [Related]
8. Knowledge based cluster ensemble for cancer discovery from biomolecular data. Yu Z; Wongb HS; You J; Yang Q; Liao H IEEE Trans Nanobioscience; 2011 Jun; 10(2):76-85. PubMed ID: 21742574 [TBL] [Abstract][Full Text] [Related]
9. Unsupervised Clustering Reveals Distinct Subtypes of Biliary Atresia Based on Immune Cell Types and Gene Expression. Pang X; Cao J; Chen S; Gao Z; Liu G; Chong Y; Chen Z; Gong J; Li X Front Immunol; 2021; 12():720841. PubMed ID: 34646264 [TBL] [Abstract][Full Text] [Related]
10. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data. Withnell E; Zhang X; Sun K; Guo Y Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34402865 [TBL] [Abstract][Full Text] [Related]
11. An Advanced Omic Approach to Identify Co-Regulated Clusters and Transcription Regulation Network with AGCT and SHOE Methods. Polouliakh N; Nock R Methods Mol Biol; 2017; 1598():373-389. PubMed ID: 28508373 [TBL] [Abstract][Full Text] [Related]
12. Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping. Rather AA; Chachoo MA Comput Biol Med; 2023 Mar; 155():106640. PubMed ID: 36774889 [TBL] [Abstract][Full Text] [Related]
13. Analysis of genetic association using hierarchical clustering and cluster validation indices. Pagnuco IA; Pastore JI; Abras G; Brun M; Ballarin VL Genomics; 2017 Oct; 109(5-6):438-445. PubMed ID: 28694080 [TBL] [Abstract][Full Text] [Related]
14. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus. Cai M; Li L BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925 [TBL] [Abstract][Full Text] [Related]
15. Stratification of Breast Cancer by Integrating Gene Expression Data and Clinical Variables. He Z; Zhang J; Yuan X; Xi J; Liu Z; Zhang Y Molecules; 2019 Feb; 24(3):. PubMed ID: 30754661 [TBL] [Abstract][Full Text] [Related]
16. Network based stratification of major cancers by integrating somatic mutation and gene expression data. He Z; Zhang J; Yuan X; Liu Z; Liu B; Tuo S; Liu Y PLoS One; 2017; 12(5):e0177662. PubMed ID: 28520777 [TBL] [Abstract][Full Text] [Related]
17. Integrative analysis of protein-coding and non-coding RNAs identifies clinically relevant subtypes of clear cell renal cell carcinoma. Li Z; Chen Y; Hu S; Zhang J; Wu J; Ren W; Shao N; Ying X Oncotarget; 2016 Dec; 7(50):82671-82685. PubMed ID: 27705920 [TBL] [Abstract][Full Text] [Related]
18. Integration of multi-omics data to mine cancer-related gene modules. Li P; Guo M; Sun B J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413 [TBL] [Abstract][Full Text] [Related]
19. Data-driven characterization of molecular phenotypes across heterogeneous sample collections. Mehtonen J; Pölönen P; Häyrynen S; Dufva O; Lin J; Liuksiala T; Granberg K; Lohi O; Hautamäki V; Nykter M; Heinäniemi M Nucleic Acids Res; 2019 Jul; 47(13):e76. PubMed ID: 31329928 [TBL] [Abstract][Full Text] [Related]
20. Identification of Cancer Driver Modules Based on Graph Clustering from Multiomics Data. Zhang W; Wang SL; Liu Y J Comput Biol; 2021 Oct; 28(10):1007-1020. PubMed ID: 34529511 [No Abstract] [Full Text] [Related] [Next] [New Search]