BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34396540)

  • 1. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel.
    Yuan D; Yadav S; Ta HT; Fallahi H; An H; Kashaninejad N; Ooi CH; Nguyen NT; Zhang J
    Electrophoresis; 2021 Nov; 42(21-22):2230-2237. PubMed ID: 34396540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic device for sheathless particle focusing and separation using a viscoelastic fluid.
    Nam J; Namgung B; Lim CT; Bae JE; Leo HL; Cho KS; Kim S
    J Chromatogr A; 2015 Aug; 1406():244-50. PubMed ID: 26122857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic-inertial separation of microparticle in a gradually contracted microchannel.
    Tian ZZ; Gan CS; Fan LL; Wang JC; Zhao L
    Electrophoresis; 2022 Nov; 43(21-22):2217-2226. PubMed ID: 36084168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced viscoelastic focusing of particle in microchannel.
    Fan LL; Zhao Z; Tao YY; Wu X; Yan Q; Zhe J; Zhao L
    Electrophoresis; 2020 Jun; 41(10-11):973-982. PubMed ID: 31900948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Focusing of sub-micrometer particles in microfluidic devices.
    Zhang T; Hong ZY; Tang SY; Li W; Inglis DW; Hosokawa Y; Yalikun Y; Li M
    Lab Chip; 2020 Jan; 20(1):35-53. PubMed ID: 31720655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory Viscoelastic Microfluidics for Efficient Focusing and Separation of Nanoscale Species.
    Asghari M; Cao X; Mateescu B; van Leeuwen D; Aslan MK; Stavrakis S; deMello AJ
    ACS Nano; 2020 Jan; 14(1):422-433. PubMed ID: 31794192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zigzag microchannel for rigid inertial separation and enrichment (Z-RISE) of cells and particles.
    Razavi Bazaz S; Mihandust A; Salomon R; Joushani HAN; Li W; A Amiri H; Mirakhorli F; Zhand S; Shrestha J; Miansari M; Thierry B; Jin D; Ebrahimi Warkiani M
    Lab Chip; 2022 Oct; 22(21):4093-4109. PubMed ID: 36102894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel viscoelastic-based ferrofluid for continuous sheathless microfluidic separation of nonmagnetic microparticles.
    Zhang J; Yan S; Yuan D; Zhao Q; Tan SH; Nguyen NT; Li W
    Lab Chip; 2016 Oct; 16(20):3947-3956. PubMed ID: 27722618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetophoresis 'meets' viscoelasticity: deterministic separation of magnetic particles in a modular microfluidic device.
    Del Giudice F; Madadi H; Villone MM; D'Avino G; Cusano AM; Vecchione R; Ventre M; Maffettone PL; Netti PA
    Lab Chip; 2015 Apr; 15(8):1912-22. PubMed ID: 25732596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary-flow-aided single-train elastic-inertial focusing in low elasticity viscoelastic fluids.
    Xiang N; Wang S; Ni Z
    Electrophoresis; 2021 Nov; 42(21-22):2256-2263. PubMed ID: 34184303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel.
    Yang S; Kim JY; Lee SJ; Lee SS; Kim JM
    Lab Chip; 2011 Jan; 11(2):266-73. PubMed ID: 20976348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices.
    Xiang N; Ni Z; Yi H
    Electrophoresis; 2018 Jan; 39(2):417-424. PubMed ID: 28990196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focusing of Particles in a Microchannel with Laser Engraved Groove Arrays.
    Zhang T; Shen Y; Kiya R; Anggraini D; Tang T; Uno H; Okano K; Tanaka Y; Hosokawa Y; Li M; Yalikun Y
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a Single-Layer Microchannel for Continuous Sheathless Single-Stream Particle Inertial Focusing.
    Zhang Y; Zhang J; Tang F; Li W; Wang X
    Anal Chem; 2018 Feb; 90(3):1786-1794. PubMed ID: 29297226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous plasma extraction under viscoelastic fluid in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Sluyter R; Zhao Q; Yan S; Alici G; Li W
    Lab Chip; 2016 Oct; 16(20):3919-3928. PubMed ID: 27714019
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic co-flow of Newtonian and viscoelastic fluids for high-resolution separation of microparticles.
    Tian F; Zhang W; Cai L; Li S; Hu G; Cong Y; Liu C; Li T; Sun J
    Lab Chip; 2017 Sep; 17(18):3078-3085. PubMed ID: 28805872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient microfluidic enrichment of nano-/submicroparticle in viscoelastic fluid.
    Fan LL; Tian ZZ; Zhe J; Zhao L
    Electrophoresis; 2021 Nov; 42(21-22):2273-2280. PubMed ID: 33629394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cascaded contraction-expansion channels for bacteria separation from RBCs using viscoelastic microfluidics.
    Bilican I
    J Chromatogr A; 2021 Aug; 1652():462366. PubMed ID: 34242936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.