BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34396540)

  • 21. A weak shear stress microfluidic device based on Viscoelastic Stagnant Region (VSR) for biosensitive particle capture.
    Lu Y; Tan W; Shi X; Liu M; Zhu G
    Talanta; 2021 Oct; 233():122550. PubMed ID: 34215053
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Viscoelastic microfluidics for enhanced separation resolution of submicron particles and extracellular vesicles.
    Hettiarachchi S; Ouyang L; Cha H; Hansen HHWB; An H; Nguyen NT; Zhang J
    Nanoscale; 2024 Feb; 16(7):3560-3570. PubMed ID: 38289397
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three-Dimensional Numerical Simulation of Particle Focusing and Separation in Viscoelastic Fluids.
    Ni C; Jiang D
    Micromachines (Basel); 2020 Sep; 11(10):. PubMed ID: 33007973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Size-Based Separation of Particles and Cells Utilizing Viscoelastic Effects in Straight Microchannels.
    Liu C; Xue C; Chen X; Shan L; Tian Y; Hu G
    Anal Chem; 2015 Jun; 87(12):6041-8. PubMed ID: 25989347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulation of micro- and nanoparticles in viscoelastic fluid flows within microfluid systems.
    Manshadi MKD; Mohammadi M; Monfared LK; Sanati-Nezhad A
    Biotechnol Bioeng; 2020 Feb; 117(2):580-592. PubMed ID: 31654394
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particle Focusing under Newtonian and Viscoelastic Flow in a Straight Rhombic Microchannel.
    Kwon JY; Kim T; Kim J; Cho Y
    Micromachines (Basel); 2020 Nov; 11(11):. PubMed ID: 33187390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dean-flow-coupled elasto-inertial three-dimensional particle focusing under viscoelastic flow in a straight channel with asymmetrical expansion-contraction cavity arrays.
    Yuan D; Zhang J; Yan S; Pan C; Alici G; Nguyen NT; Li WH
    Biomicrofluidics; 2015 Jul; 9(4):044108. PubMed ID: 26339309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of particle lateral migration in sample-sheath flow of viscoelastic fluid and Newtonian fluid.
    Yuan D; Zhang J; Yan S; Peng G; Zhao Q; Alici G; Du H; Li W
    Electrophoresis; 2016 Aug; 37(15-16):2147-55. PubMed ID: 27140330
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous erythrocyte removal and leukocyte separation from whole blood based on viscoelastic cell focusing and the margination phenomenon.
    Nam J; Yoon J; Kim J; Jang WS; Lim CS
    J Chromatogr A; 2019 Jun; 1595():230-239. PubMed ID: 30772054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Viscoelastic microfluidics: progress and challenges.
    Zhou J; Papautsky I
    Microsyst Nanoeng; 2020; 6():113. PubMed ID: 34567720
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Separation and Enrichment of Yeast
    Liu P; Liu H; Yuan D; Jang D; Yan S; Li M
    Anal Chem; 2021 Jan; 93(3):1586-1595. PubMed ID: 33289547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscoelastic Particle Focusing and Separation in a Spiral Channel.
    Feng H; Jafek AR; Wang B; Brady H; Magda JJ; Gale BK
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334653
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid.
    Nam J; Lim H; Kim D; Jung H; Shin S
    Lab Chip; 2012 Apr; 12(7):1347-54. PubMed ID: 22334376
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiplex single particle analysis in microfluidics.
    Dannhauser D; Romeo G; Causa F; De Santo I; Netti PA
    Analyst; 2014 Oct; 139(20):5239-46. PubMed ID: 25133272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separation of exfoliated tumor cells from viscoelastic pleural effusion using a microfluidic sandwich structure.
    Shi X; Tan W; Liu L; Cao W; Wang Y; Zhu G
    Anal Bioanal Chem; 2020 Sep; 412(22):5513-5523. PubMed ID: 32577800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle alignment in a viscoelastic liquid flowing in a square-shaped microchannel.
    Del Giudice F; Romeo G; D'Avino G; Greco F; Netti PA; Maffettone PL
    Lab Chip; 2013 Nov; 13(21):4263-71. PubMed ID: 24056525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulator-based dielectrophoretic focusing and trapping of particles in non-Newtonian fluids.
    Bentor J; Malekanfard A; Raihan MK; Wu S; Pan X; Song Y; Xuan X
    Electrophoresis; 2021 Nov; 42(21-22):2154-2161. PubMed ID: 33938011
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical investigation of ternary particle separation in a microchannel with a wall-mounted obstacle using dielectrophoresis.
    Derakhshan R; Bozorgzadeh A; Ramiar A
    J Chromatogr A; 2023 Aug; 1702():464079. PubMed ID: 37263054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.