BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 34396718)

  • 21. Immobilization of BMP-2-derived peptides on 3D-printed porous scaffolds for enhanced osteogenesis.
    Zhang X; Lou Q; Wang L; Min S; Zhao M; Quan C
    Biomed Mater; 2019 Nov; 15(1):015002. PubMed ID: 31597124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The synergistic effects of Sr and Si bioactive ions on osteogenesis, osteoclastogenesis and angiogenesis for osteoporotic bone regeneration.
    Mao L; Xia L; Chang J; Liu J; Jiang L; Wu C; Fang B
    Acta Biomater; 2017 Oct; 61():217-232. PubMed ID: 28807800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zero-Dimensional Carbon Dots Enhance Bone Regeneration, Osteosarcoma Ablation, and Clinical Bacterial Eradication.
    Lu Y; Li L; Li M; Lin Z; Wang L; Zhang Y; Yin Q; Xia H; Han G
    Bioconjug Chem; 2018 Sep; 29(9):2982-2993. PubMed ID: 29986578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of rhBMP-2 Loaded PCL/
    Bae EB; Park KH; Shim JH; Chung HY; Choi JW; Lee JJ; Kim CH; Jeon HJ; Kang SS; Huh JB
    Biomed Res Int; 2018; 2018():2876135. PubMed ID: 29682530
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of BMP-2 and VEGF loaded 3D printed hydroxyapatite composite scaffolds with enhanced osteogenic capacity in vitro and in vivo.
    Chen S; Shi Y; Zhang X; Ma J
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110893. PubMed ID: 32409051
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stimulatory Effects of Boron Containing Bioactive Glass on Osteogenesis and Angiogenesis of Polycaprolactone: In Vitro Study.
    Xia L; Ma W; Zhou Y; Gui Z; Yao A; Wang D; Takemura A; Uemura M; Lin K; Xu Y
    Biomed Res Int; 2019; 2019():8961409. PubMed ID: 31011582
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface engineering of 3D-printed scaffolds with minerals and a pro-angiogenic factor for vascularized bone regeneration.
    Lee J; Huh SJ; Seok JM; Lee S; Byun H; Jang GN; Kim E; Kim SJ; Park SA; Kim SM; Shin H
    Acta Biomater; 2022 Mar; 140():730-744. PubMed ID: 34896633
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Phenolic Networks-Reinforced Extracellular Matrix Scaffold for Bone Regeneration via Combining Radical-Scavenging and Photo-Responsive Regulation of Microenvironment.
    Liu Z; Wang T; Zhang L; Luo Y; Zhao J; Chen Y; Wang Y; Cao W; Zhao X; Lu B; Chen F; Zhou Z; Zheng L
    Adv Healthc Mater; 2024 Jun; 13(15):e2304158. PubMed ID: 38319101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Berberine-releasing electrospun scaffold induces osteogenic differentiation of DPSCs and accelerates bone repair.
    Ma L; Yu Y; Liu H; Sun W; Lin Z; Liu C; Miao L
    Sci Rep; 2021 Jan; 11(1):1027. PubMed ID: 33441759
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Strontium Substitution on the Physicochemical Properties and Bone Regeneration Potential of 3D Printed Calcium Silicate Scaffolds.
    Chiu YC; Shie MY; Lin YH; Lee AK; Chen YW
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rapid human-derived iPSC osteogenesis combined with three-dimensionally printed Ti6Al4V scaffolds for the repair of bone defects.
    Yu L; Yang Y; Zhang B; Bai X; Fei Q; Zhang L
    J Cell Physiol; 2020 Dec; 235(12):9763-9772. PubMed ID: 32424865
    [TBL] [Abstract][Full Text] [Related]  

  • 32. 3D printing of biomaterials with mussel-inspired nanostructures for tumor therapy and tissue regeneration.
    Ma H; Luo J; Sun Z; Xia L; Shi M; Liu M; Chang J; Wu C
    Biomaterials; 2016 Dec; 111():138-148. PubMed ID: 27728813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering 2D Mesoporous Silica@MXene-Integrated 3D-Printing Scaffolds for Combinatory Osteosarcoma Therapy and NO-Augmented Bone Regeneration.
    Yang Q; Yin H; Xu T; Zhu D; Yin J; Chen Y; Yu X; Gao J; Zhang C; Chen Y; Gao Y
    Small; 2020 Apr; 16(14):e1906814. PubMed ID: 32108432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three-Dimensional Printed Polylactic Acid Scaffolds Promote Bone-like Matrix Deposition in Vitro.
    Fairag R; Rosenzweig DH; Ramirez-Garcialuna JL; Weber MH; Haglund L
    ACS Appl Mater Interfaces; 2019 May; 11(17):15306-15315. PubMed ID: 30973708
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-Printed Multifunctional Polyetheretherketone Bone Scaffold for Multimodal Treatment of Osteosarcoma and Osteomyelitis.
    Zhu C; He M; Sun D; Huang Y; Huang L; Du M; Wang J; Wang J; Li Z; Hu B; Song Y; Li Y; Feng G; Liu L; Zhang L
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47327-47340. PubMed ID: 34587454
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.
    Holmes B; Bulusu K; Plesniak M; Zhang LG
    Nanotechnology; 2016 Feb; 27(6):064001. PubMed ID: 26758780
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D printed alendronate-releasing poly(caprolactone) porous scaffolds enhance osteogenic differentiation and bone formation in rat tibial defects.
    Kim SE; Yun YP; Shim KS; Kim HJ; Park K; Song HR
    Biomed Mater; 2016 Sep; 11(5):055005. PubMed ID: 27680282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D Printed Poly(𝜀-caprolactone)/Hydroxyapatite Scaffolds for Bone Tissue Engineering: A Comparative Study on a Composite Preparation by Melt Blending or Solvent Casting Techniques and the Influence of Bioceramic Content on Scaffold Properties.
    Biscaia S; Branquinho MV; Alvites RD; Fonseca R; Sousa AC; Pedrosa SS; Caseiro AR; Guedes F; Patrício T; Viana T; Mateus A; Maurício AC; Alves N
    Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultrathin 2D Inorganic Ancient Pigment Decorated 3D-Printing Scaffold Enables Photonic Hyperthermia of Osteosarcoma in NIR-II Biowindow and Concurrently Augments Bone Regeneration.
    He C; Dong C; Yu L; Chen Y; Hao Y
    Adv Sci (Weinh); 2021 Oct; 8(19):e2101739. PubMed ID: 34338444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.