BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34396767)

  • 1. Ti-Oxo Clusters with Peripheral Alkyl Groups as Cathode Interlayers for Efficient Organic Solar Cells.
    Chen X; Han Y; Fang J; Zhang Z; Zhang Y; Zhao C; Xia D; Dong X; Xiao C; Wu Y; You S; Li W
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39671-39677. PubMed ID: 34396767
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Organic-Inorganic Hybrid Electrolyte as a Cathode Interlayer for Efficient Organic Solar Cells.
    Zhao C; Zhang Z; Han F; Xia D; Xiao C; Fang J; Zhang Y; Wu B; You S; Wu Y; Li W
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8526-8531. PubMed ID: 33475225
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fullerene-Based Interlayers for Breaking Energy Barriers in Organic Solar Cells.
    Gu Y; Liu Y; Russell TP
    Chempluschem; 2020 Apr; 85(4):751-759. PubMed ID: 32286736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells.
    Liao Q; Kang Q; Yang Y; An C; Xu B; Hou J
    Adv Mater; 2020 Feb; 32(7):e1906557. PubMed ID: 31880003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-Dipole Induced by Incorporating Nitrogen-Bromine Hybrid Cathode Interlayers Leads to Suppressed Current Leakage and Enhanced Charge Extraction in Non-Fullerene Organic Solar Cells.
    Zheng Y; Zhao J; Liang H; Zhao Z; Kan Z
    Adv Sci (Weinh); 2023 Sep; 10(26):e2302460. PubMed ID: 37401166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Polymer Zwitterions and Zinc Oxide for High-Performance Inverted Organic Solar Cells.
    Guo Y; Liu M; Yuan C; Ren Z; Liu Y
    Macromol Rapid Commun; 2022 Nov; 43(22):e2200291. PubMed ID: 35642107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transforming Ionene Polymers into Efficient Cathode Interlayers with Pendent Fullerenes.
    Liu Y; Sheri M; Cole MD; Yu DM; Emrick T; Russell TP
    Angew Chem Int Ed Engl; 2019 Apr; 58(17):5677-5681. PubMed ID: 30861272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Efficiency and Stable Organic Solar Cells Enabled by Dual Cathode Buffer Layers.
    Huai Z; Wang L; Sun Y; Fan R; Huang S; Zhao X; Li X; Fu G; Yang S
    ACS Appl Mater Interfaces; 2018 Feb; 10(6):5682-5692. PubMed ID: 29345140
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coordination-Delayed-Hydrolysis Method for the Synthesis and Structural Modulation of Titanium-Oxo Clusters.
    Zhang L; Fan X; Yi X; Lin X; Zhang J
    Acc Chem Res; 2022 Nov; 55(21):3150-3161. PubMed ID: 36223528
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving the low interfacial tension by balancing crystallization and film-forming ability of the cathode interlayer for organic solar cells.
    Zhao Y; Liu X; Jing X; Liu Y; Liu H; Li S; Yu L; Dai S; Sun M
    J Colloid Interface Sci; 2022 Dec; 627():880-890. PubMed ID: 35901567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aminonaphthalimide-Based Molecular Cathode Interlayers for As-Cast Organic Solar Cells.
    Zhao Y; Liu Y; Liu X; Kang X; Yu L; Dai S; Sun M
    ChemSusChem; 2021 Nov; 14(21):4783-4792. PubMed ID: 34463047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Self-Organized Poly(vinylpyrrolidone)-Based Cathode Interlayer in Inverted Fullerene-Free Organic Solar Cells.
    Yang B; Zhang S; Li S; Yao H; Li W; Hou J
    Adv Mater; 2019 Jan; 31(2):e1804657. PubMed ID: 30417455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Charge Transfer between Fullerene and Non-Fullerene Acceptors Enables Highly Efficient Ternary Organic Solar Cells.
    Zhan L; Li S; Zhang S; Chen X; Lau TK; Lu X; Shi M; Li CZ; Chen H
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42444-42452. PubMed ID: 30444596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al-TiO₂ composite-modified single-layer graphene as an efficient transparent cathode for organic solar cells.
    Zhang D; Xie F; Lin P; Choy WC
    ACS Nano; 2013 Feb; 7(2):1740-7. PubMed ID: 23327464
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells.
    Liang L; Huang Z; Cai L; Chen W; Wang B; Chen K; Bai H; Tian Q; Fan B
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20585-9. PubMed ID: 25405518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zirconium Oxide Doped Organosilica Nanodots as Light- and Charge-Management Cathode Interlayer for Highly Efficient and Stable Inverted Organic Solar Cells.
    Cui M; Rong Q; Wang R; Ye D; Li N; Nian L
    Small; 2024 Mar; ():e2311339. PubMed ID: 38529739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid Cathode Interlayer Enables 17.4% Efficiency Binary Organic Solar Cells.
    Song H; Hu D; Lv J; Lu S; Haiyan C; Kan Z
    Adv Sci (Weinh); 2022 Mar; 9(8):e2105575. PubMed ID: 35040581
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Naphthalene-Diimide-Based Ionenes as Universal Interlayers for Efficient Organic Solar Cells.
    Liu M; Fan P; Hu Q; Russell TP; Liu Y
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):18131-18135. PubMed ID: 32558039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Method for Preparing ZnO Layer for Efficient and Stable Organic Solar Cells.
    Wang Y; Zheng Z; Wang J; Liu X; Ren J; An C; Zhang S; Hou J
    Adv Mater; 2023 Feb; 35(5):e2208305. PubMed ID: 36380719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inverted organic solar cells with non-clustering bathocuproine (BCP) cathode interlayers obtained by fullerene doping.
    Jafari F; Patil BR; Mohtaram F; Cauduro ALF; Rubahn HG; Behjat A; Madsen M
    Sci Rep; 2019 Jul; 9(1):10422. PubMed ID: 31320718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.