These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34396935)
1. iGluK-Deep: computational identification of lysine glutarylation sites using deep neural networks with general pseudo amino acid compositions. Naseer S; Ali RF; Khan YD; Dominic PDD J Biomol Struct Dyn; 2022; 40(22):11691-11704. PubMed ID: 34396935 [TBL] [Abstract][Full Text] [Related]
2. iPhosS(Deep)-PseAAC: Identification of Phosphoserine Sites in Proteins Using Deep Learning on General Pseudo Amino Acid Compositions. Naseer S; Hussain W; Khan YD; Rasool N IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1703-1714. PubMed ID: 33242308 [TBL] [Abstract][Full Text] [Related]
3. Computational identification of 4-carboxyglutamate sites to supplement physiological studies using deep learning. Naseer S; Ali RF; Fati SM; Muneer A Sci Rep; 2022 Jan; 12(1):128. PubMed ID: 34996975 [TBL] [Abstract][Full Text] [Related]
4. Deepro-Glu: combination of convolutional neural network and Bi-LSTM models using ProtBert and handcrafted features to identify lysine glutarylation sites. Wang X; Ding Z; Wang R; Lin X Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36653898 [TBL] [Abstract][Full Text] [Related]
5. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features. Xu Y; Yang Y; Ding J; Li C IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125 [TBL] [Abstract][Full Text] [Related]
6. RF-GlutarySite: a random forest based predictor for glutarylation sites. Al-Barakati HJ; Saigo H; Newman RH; Kc DB Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681 [TBL] [Abstract][Full Text] [Related]
7. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier. Dou L; Li X; Zhang L; Xiang H; Xu L J Proteome Res; 2021 Jan; 20(1):191-201. PubMed ID: 33090794 [TBL] [Abstract][Full Text] [Related]
8. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites. Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647 [TBL] [Abstract][Full Text] [Related]
9. DeepDN_iGlu: prediction of lysine glutarylation sites based on attention residual learning method and DenseNet. Jia J; Sun M; Wu G; Qiu W Math Biosci Eng; 2023 Jan; 20(2):2815-2830. PubMed ID: 36899559 [TBL] [Abstract][Full Text] [Related]
10. FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites. Ning Q; Qi Z; Wang Y; Deng A; Chen C Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168700 [TBL] [Abstract][Full Text] [Related]
11. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688 [TBL] [Abstract][Full Text] [Related]
12. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC. Ju Z; Cao JZ; Gu H J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214 [TBL] [Abstract][Full Text] [Related]
13. Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection. Jiao YS; Du PF J Theor Biol; 2016 Aug; 402():38-44. PubMed ID: 27155042 [TBL] [Abstract][Full Text] [Related]
14. Large-scale comparative assessment of computational predictors for lysine post-translational modification sites. Chen Z; Liu X; Li F; Li C; Marquez-Lago T; Leier A; Akutsu T; Webb GI; Xu D; Smith AI; Li L; Chou KC; Song J Brief Bioinform; 2019 Nov; 20(6):2267-2290. PubMed ID: 30285084 [TBL] [Abstract][Full Text] [Related]
15. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC. Ju Z; He JJ J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434 [TBL] [Abstract][Full Text] [Related]
16. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features. Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321 [TBL] [Abstract][Full Text] [Related]
17. GBDT_KgluSite: An improved computational prediction model for lysine glutarylation sites based on feature fusion and GBDT classifier. Liu X; Zhu B; Dai XW; Xu ZA; Li R; Qian Y; Lu YP; Zhang W; Liu Y; Zheng J BMC Genomics; 2023 Dec; 24(1):765. PubMed ID: 38082413 [TBL] [Abstract][Full Text] [Related]
18. ProtTrans-Glutar: Incorporating Features From Pre-trained Transformer-Based Models for Predicting Glutarylation Sites. Indriani F; Mahmudah KR; Purnama B; Satou K Front Genet; 2022; 13():885929. PubMed ID: 35711929 [TBL] [Abstract][Full Text] [Related]
19. SPrenylC-PseAAC: A sequence-based model developed via Chou's 5-steps rule and general PseAAC for identifying S-prenylation sites in proteins. Hussain W; Khan YD; Rasool N; Khan SA; Chou KC J Theor Biol; 2019 May; 468():1-11. PubMed ID: 30768975 [TBL] [Abstract][Full Text] [Related]
20. Deep Neural Network Framework Based on Word Embedding for Protein Glutarylation Sites Prediction. Liu CM; Ta VD; Le NQK; Tadesse DA; Shi C Life (Basel); 2022 Aug; 12(8):. PubMed ID: 36013392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]