These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 34396973)

  • 21. Hydrophobic modification of polyurethane foam for oil spill cleanup.
    Li H; Liu L; Yang F
    Mar Pollut Bull; 2012 Aug; 64(8):1648-53. PubMed ID: 22749062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sustainable approach to oil recovery from oil spills through superhydrophobic jute fabric.
    Srishti ; Kumar A
    Mar Pollut Bull; 2023 Dec; 197():115701. PubMed ID: 37890316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust and durable superhydrophobic fabrics fabricated via simple Cu nanoparticles deposition route and its application in oil/water separation.
    Wang J; Wang H
    Mar Pollut Bull; 2017 Jun; 119(1):64-71. PubMed ID: 28341295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption and superficial transport of oil on biological and bionic superhydrophobic surfaces: a novel technique for oil-water separation.
    Barthlott W; Moosmann M; Noll I; Akdere M; Wagner J; Roling N; Koepchen-Thomä L; Azad MAK; Klopp K; Gries T; Mail M
    Philos Trans A Math Phys Eng Sci; 2020 Mar; 378(2167):20190447. PubMed ID: 32008452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stearic acid-modified hollow hydroxyapatite particles with enhanced hydrophobicity for oil adsorption from oil spills.
    Shafiq F; Liu C; Zhou H; Chen H; Yu S; Qiao W
    Chemosphere; 2024 Jan; 348():140651. PubMed ID: 37995975
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Environmentally Friendly Plastic Boats - A Facile Strategy for Cleaning Oil Spills on Water with Excellent Efficiency.
    Tran VT; Nguyen TC; Nguyen TT; Nguyen HN
    Environ Sci Pollut Res Int; 2023 Jun; 30(26):68848-68862. PubMed ID: 37129816
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanically durable green aerogel composite based on agricultural lignocellulosic residue for organic liquids/oil sorption.
    Chhajed M; Verma C; Sathawane M; Singh S; Maji PK
    Mar Pollut Bull; 2022 Jul; 180():113790. PubMed ID: 35689938
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano-based systems for oil spills control and cleanup.
    Avila AF; Munhoz VC; de Oliveira AM; Santos MC; Lacerda GR; Gonçalves CP
    J Hazard Mater; 2014 May; 272():20-7. PubMed ID: 24667439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly efficient oil-in-water emulsion and oil layer/water mixture separation based on durably superhydrophobic sponge prepared via a facile route.
    Wang J; Wang H; Geng G
    Mar Pollut Bull; 2018 Feb; 127():108-116. PubMed ID: 29475642
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Magnetic hybrid gels for emulsified oil adsorption: an overview of their potential to solve environmental problems associated to petroleum spills.
    Scheverín N; Fossati A; Horst F; Lassalle V; Jacobo S
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):861-872. PubMed ID: 31814073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication of durable superhydrophobic/oleophilic cotton fabric for highly efficient oil/water separation.
    Mohamed ME; Abd-El-Nabey BA
    Water Sci Technol; 2021 Jan; 83(1):90-99. PubMed ID: 33460409
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An in situ polymerization approach for the synthesis of superhydrophobic and superoleophilic nanofibrous membranes for oil-water separation.
    Shang Y; Si Y; Raza A; Yang L; Mao X; Ding B; Yu J
    Nanoscale; 2012 Dec; 4(24):7847-54. PubMed ID: 23149675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Superhydrophobic nanoporous polymer-modified sponge for in situ oil/water separation.
    Zhang J; Chen R; Liu J; Liu Q; Yu J; Zhang H; Jing X; Liu P; Wang J
    Chemosphere; 2020 Jan; 239():124793. PubMed ID: 31726530
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effective oil removal from water by magnetically driven superhydrophobic and oleophilic magnetic titania nanotubes.
    Patowary M; Ananthakrishnan R; Pathak K
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18063-18072. PubMed ID: 28624944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogel bowls for cleaning oil spills on water.
    Tran VT; Xu X; Mredha MTI; Cui J; Vlassak JJ; Jeon I
    Water Res; 2018 Nov; 145():640-649. PubMed ID: 30205335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.
    Paulauskiene T
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9981-9991. PubMed ID: 29376214
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of coin-shaped ZIF-7 functionalized superhydrophobic polysulfone composite foams for continuous removal of oily contaminants from water.
    Lu Y; Li S; Chen F; Ma H; Gao C; Xue L
    J Hazard Mater; 2022 Jan; 421():126788. PubMed ID: 34364204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enzymatic preparation of hydrophobic biomass with one-pot synthesis and the oil removal performance.
    Peng D; Li W; Liang X; Zheng L; Guo X
    J Environ Sci (China); 2023 Feb; 124():105-116. PubMed ID: 36182120
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneously achieving high-effective oil-water separation and filter media regeneration by facile and highly hydrophobic sand coating.
    Sun Y; Liu Y; Xu B; Chen J; Yuan W; Jiang C; Wang D; Wang H
    Sci Total Environ; 2021 Dec; 800():149488. PubMed ID: 34392226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.