These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 3439713)

  • 21. Dihydropyridine calcium antagonists reduce the consumption of high-energy phosphates in the rat brain. A study using combined 31P/1H magnetic resonance spectroscopy and 31P saturation transfer.
    Rudin M; Sauter A
    J Pharmacol Exp Ther; 1989 Nov; 251(2):700-6. PubMed ID: 2810119
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of hyperglycemia on cerebral metabolism during hypoxia-ischemia in the immature rat.
    Vannucci RC; Brucklacher RM; Vannucci SJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):1026-33. PubMed ID: 8784248
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excessive cellular acidosis: an important mechanism of neuronal damage in the brain?
    Rehncrona S; Rosén I; Siesjö BK
    Acta Physiol Scand; 1980 Dec; 110(4):435-7. PubMed ID: 7234448
    [No Abstract]   [Full Text] [Related]  

  • 24. [Effect of recirculation on experimental cerebral ischemia. 3. Therapy].
    Nakatomi Y
    Fukuoka Igaku Zasshi; 1982 Sep; 73(9):532-40. PubMed ID: 7152450
    [No Abstract]   [Full Text] [Related]  

  • 25. In vivo measurement of energy metabolism and the concomitant monitoring of electroencephalogram in experimental cerebral ischemia.
    Naruse S; Horikawa Y; Tanaka C; Hirakawa K; Nishikawa H; Watari H
    Brain Res; 1984 Apr; 296(2):370-2. PubMed ID: 6704744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Effects of hypo- or hyperglycemia on brain metabolism in experimental cerebral ischemia].
    Nakatomi Y; Fujishima M; Yoshida F; Ibayashi S; Shiokawa O; Omae T
    No To Shinkei; 1983 Feb; 35(2):161-5. PubMed ID: 6849711
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Further evaluation of polypeptide synthesis in cerebral anoxia, hypoxia and ischemia.
    Morimoto K; Brengman J; Yanagihara T
    J Neurochem; 1978 Nov; 31(5):1277-82. PubMed ID: 29949
    [No Abstract]   [Full Text] [Related]  

  • 28. [The effect of glucose and insulin on carbohydrate and prostaglandin metabolism in the ischemic brain].
    Zhou D
    Zhonghua Shen Jing Jing Shen Ke Za Zhi; 1988 Dec; 21(6):340-2, 385. PubMed ID: 3073927
    [No Abstract]   [Full Text] [Related]  

  • 29. Effects of hypoxic hypoxia on cerebral phosphate metabolites and pH in the anesthetized infant rabbit.
    González-Méndez R; McNeill A; Gregory GA; Wall SD; Gooding CA; Litt L; James TL
    J Cereb Blood Flow Metab; 1985 Dec; 5(4):512-6. PubMed ID: 4055924
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The metabolism and mechanical function of hypoxic and ischemic myocardium: a comparative study (author's transl)].
    Ferrari R; Nayler WG
    G Ital Cardiol; 1979; 9(9):954-64. PubMed ID: 520744
    [No Abstract]   [Full Text] [Related]  

  • 31. [Approaches to predicting the limits of body resistance to hypoxia based on assessment of adenine nucleotide system].
    Moshkova AN; Stefanov VE; Khvatova EM; Lyzlova SN
    Biull Eksp Biol Med; 1998 Apr; 125(4):391-4. PubMed ID: 9631717
    [No Abstract]   [Full Text] [Related]  

  • 32. Energy metabolites and water content in rat brain during the early stage of development of cerebral infarction.
    Kogure K; Busto R; Scheinberg P; Reinmuth OM
    Brain; 1974 Mar; 97(1):103-14. PubMed ID: 4434163
    [No Abstract]   [Full Text] [Related]  

  • 33. Metabolic effects of kynurenate during reversible forebrain ischemia studied by in vivo 31P-nuclear magnetic resonance spectroscopy.
    Roucher P; Meric P; Correze JL; Mispelter J; Tiffon B; Lhoste JM; Seylaz J
    Brain Res; 1991 May; 550(1):54-60. PubMed ID: 1889001
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acute cerebral ischaemia: concurrent changes in cerebral blood flow, energy metabolites, pH, and lactate measured with hydrogen clearance and 31P and 1H nuclear magnetic resonance spectroscopy. II. Changes during ischaemia.
    Crockard HA; Gadian DG; Frackowiak RS; Proctor E; Allen K; Williams SR; Russell RW
    J Cereb Blood Flow Metab; 1987 Aug; 7(4):394-402. PubMed ID: 3611203
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Homeostatic regulation of brain energy metabolism in hypoxia.
    Lewis LD; Pontén U; Siesjö BK
    Acta Physiol Scand; 1973 Jun; 88(2):284-6. PubMed ID: 4764185
    [No Abstract]   [Full Text] [Related]  

  • 36. Proton decoupled fluorine nuclear magnetic resonance spectroscopy in situ.
    Berkowitz BA; Ackerman JJ
    Biophys J; 1987 Apr; 51(4):681-5. PubMed ID: 3034345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 19F-nuclear magnetic resonance spectroscopy. Its use in defining molecular sites of anesthetic action.
    Evers AS; Dubois BW
    Ann N Y Acad Sci; 1991; 625():725-32. PubMed ID: 2058920
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of hyperglycemia on the time course of changes in energy metabolism and pH during global cerebral ischemia and reperfusion in rats: correlation of 1H and 31P NMR spectroscopy with fatty acid and excitatory amino acid levels.
    Widmer H; Abiko H; Faden AI; James TL; Weinstein PR
    J Cereb Blood Flow Metab; 1992 May; 12(3):456-68. PubMed ID: 1569139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of tissue acidosis upon restitution of brain energy metabolism following total ischemia.
    Ljunggren B; Norberg K; Siesjö BK
    Brain Res; 1974 Sep; 77(2):173-86. PubMed ID: 4852452
    [No Abstract]   [Full Text] [Related]  

  • 40. Fructose-1,6-bisphosphate and fructose-2,6-bisphosphate do not influence brain carbohydrate or high-energy phosphate metabolism in a rat model of forebrain ischemia.
    Hofer RE; Wagner SR; Pasternak JJ; Albrecht RF; Gallagher WJ; Lanier WL
    J Neurosurg Anesthesiol; 2009 Jan; 21(1):31-9. PubMed ID: 19098621
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.