These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 34397162)
1. Molecular basis and regulatory mechanisms underlying fungal insecticides' resistance to solar ultraviolet irradiation. Tong SM; Feng MG Pest Manag Sci; 2022 Jan; 78(1):30-42. PubMed ID: 34397162 [TBL] [Abstract][Full Text] [Related]
2. Two Photolyases Repair Distinct DNA Lesions and Reactivate UVB-Inactivated Conidia of an Insect Mycopathogen under Visible Light. Wang DY; Fu B; Tong SM; Ying SH; Feng MG Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552186 [TBL] [Abstract][Full Text] [Related]
3. Divergent roles of Rad4 and Rad23 homologs in Zhang YL; Peng H; Zhang K; Ying SH; Feng MG Appl Environ Microbiol; 2023 Sep; 89(9):e0099423. PubMed ID: 37655890 [TBL] [Abstract][Full Text] [Related]
4. Photoprotective Role of Photolyase-Interacting RAD23 and Its Pleiotropic Effect on the Insect-Pathogenic Fungus Beauveria bassiana. Wang DY; Mou YN; Tong SM; Ying SH; Feng MG Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245759 [TBL] [Abstract][Full Text] [Related]
5. Recovery of insect-pathogenic fungi from solar UV damage: Molecular mechanisms and prospects. Feng MG Adv Appl Microbiol; 2024; 129():59-82. PubMed ID: 39389708 [TBL] [Abstract][Full Text] [Related]
6. Two white collar proteins protect fungal cells from solar UV damage by their interactions with two photolyases in Metarhizium robertsii. Peng H; Guo CT; Tong SM; Ying SH; Feng MG Environ Microbiol; 2021 Sep; 23(9):4925-4938. PubMed ID: 33438355 [TBL] [Abstract][Full Text] [Related]
7. High photoreactivation activities of Rad2 and Rad14 in recovering insecticidal Beauveria bassiana from solar UV damage. Yu L; Xu SY; Luo XC; Ying SH; Feng MG J Photochem Photobiol B; 2024 Feb; 251():112849. PubMed ID: 38277960 [TBL] [Abstract][Full Text] [Related]
8. Rad1 and Rad10 Tied to Photolyase Regulators Protect Insecticidal Fungal Cells from Solar UV Damage by Photoreactivation. Yu L; Xu SY; Luo XC; Ying SH; Feng MG J Fungi (Basel); 2022 Oct; 8(11):. PubMed ID: 36354891 [No Abstract] [Full Text] [Related]
9. Rad2, Rad14 and Rad26 recover Metarhizium robertsii from solar UV damage through photoreactivation in vivo. Peng H; Zhang YL; Ying SH; Feng MG Microbiol Res; 2024 Mar; 280():127589. PubMed ID: 38154444 [TBL] [Abstract][Full Text] [Related]
10. Comparative Roles of Rad4A and Rad4B in Photoprotection of Yu L; Xu SY; Luo XC; Ying SH; Feng MG J Fungi (Basel); 2023 Jan; 9(2):. PubMed ID: 36836269 [TBL] [Abstract][Full Text] [Related]
11. Co-Regulatory Roles of WC1 and WC2 in Asexual Development and Photoreactivation of Xu SY; Yu L; Luo XC; Ying SH; Feng MG J Fungi (Basel); 2023 Feb; 9(3):. PubMed ID: 36983459 [TBL] [Abstract][Full Text] [Related]
12. Optional strategies for low-risk and non-risk applications of fungal pesticides to avoid solar ultraviolet damage. Yu L; Xu SY; Tong SM; Ying SH; Feng MG Pest Manag Sci; 2022 Nov; 78(11):4660-4667. PubMed ID: 35864789 [TBL] [Abstract][Full Text] [Related]
13. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. Pereira-Junior RA; Huarte-Bonnet C; Paixão FRS; Roberts DW; Luz C; Pedrini N; Fernandes ÉKK J Appl Microbiol; 2018 Jul; 125(1):159-171. PubMed ID: 29473986 [TBL] [Abstract][Full Text] [Related]
14. Enhanced UV resistance and improved killing of malaria mosquitoes by photolyase transgenic entomopathogenic fungi. Fang W; St Leger RJ PLoS One; 2012; 7(8):e43069. PubMed ID: 22912789 [TBL] [Abstract][Full Text] [Related]
15. Efficient Photoreactivation of Solar UV-Injured Metarhizium robertsii by Rad1 and Rad10 Linked to DNA Photorepair-Required Proteins. Zhang YL; Peng H; Ying SH; Feng MG Photochem Photobiol; 2023; 99(4):1122-1130. PubMed ID: 36441642 [TBL] [Abstract][Full Text] [Related]
16. Phenotypic and molecular insights into heat tolerance of formulated cells as active ingredients of fungal insecticides. Tong SM; Feng MG Appl Microbiol Biotechnol; 2020 Jul; 104(13):5711-5724. PubMed ID: 32405755 [TBL] [Abstract][Full Text] [Related]
17. Antioxidant enzymes and their contributions to biological control potential of fungal insect pathogens. Zhang LB; Feng MG Appl Microbiol Biotechnol; 2018 Jun; 102(12):4995-5004. PubMed ID: 29704043 [TBL] [Abstract][Full Text] [Related]
18. Insect pathogens as biological control agents: Back to the future. Lacey LA; Grzywacz D; Shapiro-Ilan DI; Frutos R; Brownbridge M; Goettel MS J Invertebr Pathol; 2015 Nov; 132():1-41. PubMed ID: 26225455 [TBL] [Abstract][Full Text] [Related]
19. Trichoderma atroviride PHR1, a fungal photolyase responsible for DNA repair, autoregulates its own photoinduction. Berrocal-Tito GM; Esquivel-Naranjo EU; Horwitz BA; Herrera-Estrella A Eukaryot Cell; 2007 Sep; 6(9):1682-92. PubMed ID: 17545314 [TBL] [Abstract][Full Text] [Related]
20. Outcome of blue, green, red, and white light on Metarhizium robertsii during mycelial growth on conidial stress tolerance and gene expression. Dias LP; Pedrini N; Braga GUL; Ferreira PC; Pupin B; Araújo CAS; Corrochano LM; Rangel DEN Fungal Biol; 2020 May; 124(5):263-272. PubMed ID: 32389288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]