These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 34397217)
1. Surface-Tailored InP Nanowires via Self-Assembled Au Nanodots for Efficient and Stable Photoelectrochemical Hydrogen Evolution. Narangari PR; Butson JD; Tan HH; Jagadish C; Karuturi S Nano Lett; 2021 Aug; 21(16):6967-6974. PubMed ID: 34397217 [TBL] [Abstract][Full Text] [Related]
2. Engineering MoSx/Ti/InP Hybrid Photocathode for Improved Solar Hydrogen Production. Li Q; Zheng M; Zhong M; Ma L; Wang F; Ma L; Shen W Sci Rep; 2016 Jul; 6():29738. PubMed ID: 27431993 [TBL] [Abstract][Full Text] [Related]
3. Hydrogen-substituted graphdiyne encapsulated cuprous oxide photocathode for efficient and stable photoelectrochemical water reduction. Zhou X; Fu B; Li L; Tian Z; Xu X; Wu Z; Yang J; Zhang Z Nat Commun; 2022 Oct; 13(1):5770. PubMed ID: 36182949 [TBL] [Abstract][Full Text] [Related]
4. Nonepitaxial Thin-Film InP for Scalable and Efficient Photocathodes. Hettick M; Zheng M; Lin Y; Sutter-Fella CM; Ager JW; Javey A J Phys Chem Lett; 2015 Jun; 6(12):2177-82. PubMed ID: 26266588 [TBL] [Abstract][Full Text] [Related]
5. Large-area ordered P-type Si nanowire arrays as photocathode for highly efficient photoelectrochemical hydrogen generation. Huang S; Zhang H; Wu Z; Kong D; Lin D; Fan Y; Yang X; Zhong Z; Huang S; Jiang Z; Cheng C ACS Appl Mater Interfaces; 2014 Aug; 6(15):12111-8. PubMed ID: 25020241 [TBL] [Abstract][Full Text] [Related]
6. InP nanopore arrays for photoelectrochemical hydrogen generation. Li Q; Zheng M; Zhang B; Zhu C; Wang F; Song J; Zhong M; Ma L; Shen W Nanotechnology; 2016 Feb; 27(7):075704. PubMed ID: 26775672 [TBL] [Abstract][Full Text] [Related]
7. Robust Protection of III-V Nanowires in Water Splitting by a Thin Compact TiO Cui F; Zhang Y; Fonseka HA; Promdet P; Channa AI; Wang M; Xia X; Sathasivam S; Liu H; Parkin IP; Yang H; Li T; Choy KL; Wu J; Blackman C; Sanchez AM; Liu H ACS Appl Mater Interfaces; 2021 Jul; 13(26):30950-30958. PubMed ID: 34160197 [TBL] [Abstract][Full Text] [Related]
8. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production. Li Q; Zheng M; Ma L; Zhong M; Zhu C; Zhang B; Wang F; Song J; Ma L; Shen W ACS Appl Mater Interfaces; 2016 Aug; 8(34):22493-500. PubMed ID: 27501479 [TBL] [Abstract][Full Text] [Related]
9. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. Yang Y; Wang M; Zhang P; Wang W; Han H; Sun L ACS Appl Mater Interfaces; 2016 Nov; 8(44):30143-30151. PubMed ID: 27762535 [TBL] [Abstract][Full Text] [Related]
10. Stable and Efficient CuO Based Photocathode through Oxygen-Rich Composition and Au-Pd Nanostructure Incorporation for Solar-Hydrogen Production. Masudy-Panah S; Siavash Moakhar R; Chua CS; Kushwaha A; Dalapati GK ACS Appl Mater Interfaces; 2017 Aug; 9(33):27596-27606. PubMed ID: 28731678 [TBL] [Abstract][Full Text] [Related]
11. Facile solution synthesis of α-FeF3·3H2O nanowires and their conversion to α-Fe2O3 nanowires for photoelectrochemical application. Li L; Yu Y; Meng F; Tan Y; Hamers RJ; Jin S Nano Lett; 2012 Feb; 12(2):724-31. PubMed ID: 22214175 [TBL] [Abstract][Full Text] [Related]
12. Efficient and Stable Silicon Photocathodes Coated with Vertically Standing Nano-MoS Fan R; Mao J; Yin Z; Jie J; Dong W; Fang L; Zheng F; Shen M ACS Appl Mater Interfaces; 2017 Feb; 9(7):6123-6129. PubMed ID: 28128543 [TBL] [Abstract][Full Text] [Related]
13. Chlorophyll( Roy K; Ghosh D; Sarkar K; Devi P; Kumar P ACS Appl Mater Interfaces; 2020 Aug; 12(33):37218-37226. PubMed ID: 32814382 [TBL] [Abstract][Full Text] [Related]
14. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting. Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248 [TBL] [Abstract][Full Text] [Related]
15. Protocol for scalable top-down fabrication of InP nanopillars using a self-assembled random mask technique. Soo JZ; Narangari PR; Jagadish C; Tan HH; Karuturi S STAR Protoc; 2023 Apr; 4(2):102237. PubMed ID: 37083321 [TBL] [Abstract][Full Text] [Related]
16. Facet cutting and hydrogenation of In(2)O(3) nanowires for enhanced photoelectrochemical water splitting. Meng M; Wu X; Zhu X; Zhu X; Chu PK ACS Appl Mater Interfaces; 2014 Mar; 6(6):4081-8. PubMed ID: 24568166 [TBL] [Abstract][Full Text] [Related]
17. On the origin of the photocurrent of electrochemically passivated p-InP(100) photoelectrodes. Goryachev A; Gao L; van Veldhoven RPJ; Haverkort JEM; Hofmann JP; Hensen EJM Phys Chem Chem Phys; 2018 May; 20(20):14242-14250. PubMed ID: 29761813 [TBL] [Abstract][Full Text] [Related]
18. Photoelectrochemical properties of (In,Ga)N nanowires for water splitting investigated by in situ electrochemical mass spectroscopy. Kamimura J; Bogdanoff P; Lähnemann J; Hauswald C; Geelhaar L; Fiechter S; Riechert H J Am Chem Soc; 2013 Jul; 135(28):10242-5. PubMed ID: 23799779 [TBL] [Abstract][Full Text] [Related]
19. Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP Chen F; Zhu Q; Wang Y; Cui W; Su X; Li Y ACS Appl Mater Interfaces; 2016 Nov; 8(45):31025-31031. PubMed ID: 27768279 [TBL] [Abstract][Full Text] [Related]
20. Scalable Low-Band-Gap Sb Zhang L; Li Y; Li C; Chen Q; Zhen Z; Jiang X; Zhong M; Zhang F; Zhu H ACS Nano; 2017 Dec; 11(12):12753-12763. PubMed ID: 29165986 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]