BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 34398205)

  • 1. A Data Set and Deep Learning Algorithm for the Detection of Masses and Architectural Distortions in Digital Breast Tomosynthesis Images.
    Buda M; Saha A; Walsh R; Ghate S; Li N; Swiecicki A; Lo JY; Mazurowski MA
    JAMA Netw Open; 2021 Aug; 4(8):e2119100. PubMed ID: 34398205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Developing breast lesion detection algorithms for digital breast tomosynthesis: Leveraging false positive findings.
    Hossain MB; Nishikawa RM; Lee J
    Med Phys; 2022 Dec; 49(12):7596-7608. PubMed ID: 35916103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of Digital Breast Tomosynthesis vs Digital Mammography With Cancer Detection and Recall Rates by Age and Breast Density.
    Conant EF; Barlow WE; Herschorn SD; Weaver DL; Beaber EF; Tosteson ANA; Haas JS; Lowry KP; Stout NK; Trentham-Dietz A; diFlorio-Alexander RM; Li CI; Schnall MD; Onega T; Sprague BL;
    JAMA Oncol; 2019 May; 5(5):635-642. PubMed ID: 30816931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of Artificial Intelligence Decision Support Using Deep Learning on Breast Cancer Screening Interpretation with Single-View Wide-Angle Digital Breast Tomosynthesis.
    Pinto MC; Rodriguez-Ruiz A; Pedersen K; Hofvind S; Wicklein J; Kappler S; Mann RM; Sechopoulos I
    Radiology; 2021 Sep; 300(3):529-536. PubMed ID: 34227882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.
    Dibble EH; Lourenco AP; Baird GL; Ward RC; Maynard AS; Mainiero MB
    Eur Radiol; 2018 Jan; 28(1):3-10. PubMed ID: 28710582
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis.
    Konz N; Buda M; Gu H; Saha A; Yang J; Chledowski J; Park J; Witowski J; Geras KJ; Shoshan Y; Gilboa-Solomon F; Khapun D; Ratner V; Barkan E; Ozery-Flato M; Martí R; Omigbodun A; Marasinou C; Nakhaei N; Hsu W; Sahu P; Hossain MB; Lee J; Santos C; Przelaskowski A; Kalpathy-Cramer J; Bearce B; Cha K; Farahani K; Petrick N; Hadjiiski L; Drukker K; Armato SG; Mazurowski MA
    JAMA Netw Open; 2023 Feb; 6(2):e230524. PubMed ID: 36821110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of AI for Digital Breast Tomosynthesis on Breast Cancer Detection and Interpretation Time.
    Park EK; Kwak S; Lee W; Choi JS; Kooi T; Kim EK
    Radiol Artif Intell; 2024 May; 6(3):e230318. PubMed ID: 38568095
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of masses in digital breast tomosynthesis using complementary information of simulated projection.
    Kim ST; Kim DH; Ro YM
    Med Phys; 2015 Dec; 42(12):7043-58. PubMed ID: 26632059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effectiveness of Digital Breast Tomosynthesis Compared With Digital Mammography: Outcomes Analysis From 3 Years of Breast Cancer Screening.
    McDonald ES; Oustimov A; Weinstein SP; Synnestvedt MB; Schnall M; Conant EF
    JAMA Oncol; 2016 Jun; 2(6):737-43. PubMed ID: 26893205
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transfer Learning From Convolutional Neural Networks for Computer-Aided Diagnosis: A Comparison of Digital Breast Tomosynthesis and Full-Field Digital Mammography.
    Mendel K; Li H; Sheth D; Giger M
    Acad Radiol; 2019 Jun; 26(6):735-743. PubMed ID: 30076083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study.
    van Winkel SL; Rodríguez-Ruiz A; Appelman L; Gubern-Mérida A; Karssemeijer N; Teuwen J; Wanders AJT; Sechopoulos I; Mann RM
    Eur Radiol; 2021 Nov; 31(11):8682-8691. PubMed ID: 33948701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Mammography versus Breast Tomosynthesis: Impact of Breast Density on Diagnostic Performance in Population-based Screening.
    Østerås BH; Martinsen ACT; Gullien R; Skaane P
    Radiology; 2019 Oct; 293(1):60-68. PubMed ID: 31407968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Semiautonomous Deep Learning System to Reduce False Positives in Screening Mammography.
    Pedemonte S; Tsue T; Mombourquette B; Truong Vu YN; Matthews T; Morales Hoil R; Shah M; Ghare N; Zingman-Daniels N; Holley S; Appleton CM; Su J; Wahl RL
    Radiol Artif Intell; 2024 May; 6(3):e230033. PubMed ID: 38597785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass detection in reconstructed digital breast tomosynthesis volumes with a computer-aided detection system trained on 2D mammograms.
    van Schie G; Wallis MG; Leifland K; Danielsson M; Karssemeijer N
    Med Phys; 2013 Apr; 40(4):041902. PubMed ID: 23556896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mass detection in digital breast tomosynthesis: Deep convolutional neural network with transfer learning from mammography.
    Samala RK; Chan HP; Hadjiiski L; Helvie MA; Wei J; Cha K
    Med Phys; 2016 Dec; 43(12):6654. PubMed ID: 27908154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Intelligence for Reducing Workload in Breast Cancer Screening with Digital Breast Tomosynthesis.
    Shoshan Y; Bakalo R; Gilboa-Solomon F; Ratner V; Barkan E; Ozery-Flato M; Amit M; Khapun D; Ambinder EB; Oluyemi ET; Panigrahi B; DiCarlo PA; Rosen-Zvi M; Mullen LA
    Radiology; 2022 Apr; 303(1):69-77. PubMed ID: 35040677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AI-based Strategies to Reduce Workload in Breast Cancer Screening with Mammography and Tomosynthesis: A Retrospective Evaluation.
    Raya-Povedano JL; Romero-Martín S; Elías-Cabot E; Gubern-Mérida A; Rodríguez-Ruiz A; Álvarez-Benito M
    Radiology; 2021 Jul; 300(1):57-65. PubMed ID: 33944627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms.
    Schaffter T; Buist DSM; Lee CI; Nikulin Y; Ribli D; Guan Y; Lotter W; Jie Z; Du H; Wang S; Feng J; Feng M; Kim HE; Albiol F; Albiol A; Morrell S; Wojna Z; Ahsen ME; Asif U; Jimeno Yepes A; Yohanandan S; Rabinovici-Cohen S; Yi D; Hoff B; Yu T; Chaibub Neto E; Rubin DL; Lindholm P; Margolies LR; McBride RB; Rothstein JH; Sieh W; Ben-Ari R; Harrer S; Trister A; Friend S; Norman T; Sahiner B; Strand F; Guinney J; Stolovitzky G; ; Mackey L; Cahoon J; Shen L; Sohn JH; Trivedi H; Shen Y; Buturovic L; Pereira JC; Cardoso JS; Castro E; Kalleberg KT; Pelka O; Nedjar I; Geras KJ; Nensa F; Goan E; Koitka S; Caballero L; Cox DD; Krishnaswamy P; Pandey G; Friedrich CM; Perrin D; Fookes C; Shi B; Cardoso Negrie G; Kawczynski M; Cho K; Khoo CS; Lo JY; Sorensen AG; Jung H
    JAMA Netw Open; 2020 Mar; 3(3):e200265. PubMed ID: 32119094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-view digital breast tomosynthesis as a stand-alone modality for breast cancer detection: do we need more?
    Rodriguez-Ruiz A; Gubern-Merida A; Imhof-Tas M; Lardenoije S; Wanders AJT; Andersson I; Zackrisson S; Lång K; Dustler M; Karssemeijer N; Mann RM; Sechopoulos I
    Eur Radiol; 2018 May; 28(5):1938-1948. PubMed ID: 29230524
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.