These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 34398508)

  • 21. Ecological opportunity and the rise and fall of crocodylomorph evolutionary innovation.
    Stubbs TL; Pierce SE; Elsler A; Anderson PSL; Rayfield EJ; Benton MJ
    Proc Biol Sci; 2021 Mar; 288(1947):20210069. PubMed ID: 33757349
    [TBL] [Abstract][Full Text] [Related]  

  • 22. What's in an Outgroup? The Impact of Outgroup Choice on the Phylogenetic Position of Thalattosuchia (Crocodylomorpha) and the Origin of Crocodyliformes.
    Wilberg EW
    Syst Biol; 2015 Jul; 64(4):621-37. PubMed ID: 25840332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental drivers of crocodyliform extinction across the Jurassic/Cretaceous transition.
    Tennant JP; Mannion PD; Upchurch P
    Proc Biol Sci; 2016 Mar; 283(1826):20152840. PubMed ID: 26962137
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tooth-on-tooth interlocking occlusion suggests macrophagy in the mesozoic marine crocodylomorph dakosaurus.
    Young MT; Brusatte SL; Beatty BL; De Andrade MB; Desojo JB
    Anat Rec (Hoboken); 2012 Jul; 295(7):1147-58. PubMed ID: 22577071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolutionary structure and timing of major habitat shifts in Crocodylomorpha.
    Wilberg EW; Turner AH; Brochu CA
    Sci Rep; 2019 Jan; 9(1):514. PubMed ID: 30679529
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The first metriorhynchid crocodylomorph from the Middle Jurassic of Spain, with implications for evolution of the subclade Rhacheosaurini.
    Parrilla-Bel J; Young MT; Moreno-Azanza M; Canudo JI
    PLoS One; 2013; 8(1):e54275. PubMed ID: 23372699
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new fossil from the Jurassic of Patagonia reveals the early basicranial evolution and the origins of Crocodyliformes.
    Pol D; Rauhut OW; Lecuona A; Leardi JM; Xu X; Clark JM
    Biol Rev Camb Philos Soc; 2013 Nov; 88(4):862-72. PubMed ID: 23445256
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Salt glands in the Jurassic metriorhynchid Geosaurus: implications for the evolution of osmoregulation in Mesozoic marine crocodyliforms.
    Fernández M; Gasparini Z
    Naturwissenschaften; 2008 Jan; 95(1):79-84. PubMed ID: 17712540
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dispatches from the age of crocodiles: New discoveries from ancient lineages.
    Holliday CM; Schachner ER
    Anat Rec (Hoboken); 2022 Oct; 305(10):2343-2352. PubMed ID: 35912969
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The ecological diversification and evolution of Teleosauroidea (Crocodylomorpha, Thalattosuchia), with insights into their mandibular biomechanics.
    Johnson MM; Foffa D; Young MT; Brusatte SL
    Ecol Evol; 2022 Nov; 12(11):e9484. PubMed ID: 36415878
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A revision of the diagnosis and affinities of the metriorhynchoids (Crocodylomorpha, Thalattosuchia) from the Rosso Ammonitico Veronese Formation (Jurassic of Italy) using specimen-level analyses.
    Cau A
    PeerJ; 2019; 7():e7364. PubMed ID: 31523492
    [No Abstract]   [Full Text] [Related]  

  • 32. Complex macroevolutionary dynamics underly the evolution of the crocodyliform skull.
    Felice RN; Pol D; Goswami A
    Proc Biol Sci; 2021 Jul; 288(1954):20210919. PubMed ID: 34256005
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paratympanic sinuses in juvenile Alligator.
    Tahara R; Larsson HCE
    Anat Rec (Hoboken); 2022 Oct; 305(10):2926-2979. PubMed ID: 35591791
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The neuroanatomy of Zulmasuchus querejazus (Crocodylomorpha, Sebecidae) and its implications for the paleoecology of sebecosuchians.
    Pochat-Cottilloux Y; Martin JE; Jouve S; Perrichon G; Adrien J; Salaviale C; de Muizon C; Cespedes R; Amiot R
    Anat Rec (Hoboken); 2022 Oct; 305(10):2708-2728. PubMed ID: 34825786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The formation of the human paranasal sinuses.
    Takahashi R
    Acta Otolaryngol Suppl; 1984; 408():1-28. PubMed ID: 6437135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The evolution of the meatal chamber in crocodyliforms.
    Montefeltro FC; Andrade DV; Larsson HC
    J Anat; 2016 May; 228(5):838-63. PubMed ID: 26843096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Macroscopic anatomy, radiography and computed tomography of normal paranasal sinuses of the adult one-humped dromedary (Camelus dromedarius).
    Ben Khalifa A; Ben Braiek A; Belhaj Hmida L; Chandoul W; Mattoussi A
    Vet Med Sci; 2021 Sep; 7(5):1460-1468. PubMed ID: 33932954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The multi-peak adaptive landscape of crocodylomorph body size evolution.
    Godoy PL; Benson RBJ; Bronzati M; Butler RJ
    BMC Evol Biol; 2019 Aug; 19(1):167. PubMed ID: 31390981
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the paratympanic pneumatic system of Japanese quail.
    Tahara R; Larsson HCE
    J Morphol; 2019 Oct; 280(10):1492-1529. PubMed ID: 31390118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using semi-automated segmentation of computed tomography datasets for three-dimensional visualization and volume measurements of equine paranasal sinuses.
    Brinkschulte M; Bienert-Zeit A; Lüpke M; Hellige M; Staszyk C; Ohnesorge B
    Vet Radiol Ultrasound; 2013; 54(6):582-90. PubMed ID: 23890087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.