These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 34398518)

  • 1. Catalytic Hydrogenolysis of Lignin: The Influence of Minor Units and Saccharides.
    Wang Z; Deuss PJ
    ChemSusChem; 2021 Dec; 14(23):5186-5198. PubMed ID: 34398518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reductive catalytic fractionation of pine wood: elucidating and quantifying the molecular structures in the lignin oil.
    Van Aelst K; Van Sinay E; Vangeel T; Cooreman E; Van den Bossche G; Renders T; Van Aelst J; Van den Bosch S; Sels BF
    Chem Sci; 2020 Sep; 11(42):11498-11508. PubMed ID: 34094394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unlocking Structure-Reactivity Relationships for Catalytic Hydrogenolysis of Lignin into Phenolic Monomers.
    Wang S; Li WX; Yang YQ; Chen X; Ma J; Chen C; Xiao LP; Sun RC
    ChemSusChem; 2020 Sep; 13(17):4548-4556. PubMed ID: 32419330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molybdenum-catalyzed hydrogenolysis of herbaceous biomass: A procedure integrated lignin fragmentation and components fractionation.
    Gong X; Sun J; Xu X; Wang B; Li H; Peng F
    Bioresour Technol; 2021 Aug; 333():124977. PubMed ID: 33872998
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lignin Valorization by Cobalt-Catalyzed Fractionation of Lignocellulose to Yield Monophenolic Compounds.
    Rautiainen S; Di Francesco D; Katea SN; Westin G; Tungasmita DN; Samec JSM
    ChemSusChem; 2019 Jan; 12(2):404-408. PubMed ID: 30485687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic conversion of nonfood woody biomass solids to organic liquids.
    Barta K; Ford PC
    Acc Chem Res; 2014 May; 47(5):1503-12. PubMed ID: 24745655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organosolv Fractionation of Walnut Shell Biomass to Isolate Lignocellulosic Components for Chemical Upgrading of Lignin to Aromatics.
    Nishide RN; Truong JH; Abu-Omar MM
    ACS Omega; 2021 Mar; 6(12):8142-8150. PubMed ID: 33817473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractionation and characterization of lignin streams from unique high-lignin content endocarp feedstocks.
    Li W; Amos K; Li M; Pu Y; Debolt S; Ragauskas AJ; Shi J
    Biotechnol Biofuels; 2018; 11():304. PubMed ID: 30455733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequential utilization of bamboo biomass through reductive catalytic fractionation of lignin.
    Zhang K; Li H; Xiao LP; Wang B; Sun RC; Song G
    Bioresour Technol; 2019 Aug; 285():121335. PubMed ID: 31003204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of cellulolytic enzyme lignin from wood preswollen/dissolved in dimethyl sulfoxide/n-methylimidazole.
    Zhang A; Lu F; Sun RC; Ralph J
    J Agric Food Chem; 2010 Mar; 58(6):3446-50. PubMed ID: 20158201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of catalyst and reaction conditions on aromatic monomer yields, product distribution, and sugar yields during lignin hydrogenolysis of silver birch wood.
    Phongpreecha T; Christy KF; Singh SK; Hao P; Hodge DB
    Bioresour Technol; 2020 Nov; 316():123907. PubMed ID: 32739581
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive study of the promoting effect of manganese on white rot fungal treatment for enzymatic hydrolysis of woody and grass lignocellulose.
    Fu X; Zhang J; Gu X; Yu H; Chen S
    Biotechnol Biofuels; 2021 Sep; 14(1):176. PubMed ID: 34488855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protection Group Effects During α,γ-Diol Lignin Stabilization Promote High-Selectivity Monomer Production.
    Lan W; Amiri MT; Hunston CM; Luterbacher JS
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1356-1360. PubMed ID: 29210487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-First Depolymerization of Lignocellulose into Monophenols over Carbon Nanotube-Supported Ruthenium: Impact of Lignin Sources.
    Su S; Xiao LP; Chen X; Wang S; Chen XH; Guo Y; Zhai SR
    ChemSusChem; 2022 Jun; 15(12):e202200365. PubMed ID: 35438245
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar.
    Carrozza CF; Papa G; Citterio A; Sebastiano R; Simmons BA; Singh S
    Bioresour Technol; 2019 Dec; 294():122214. PubMed ID: 31605914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LigninGraphs: lignin structure determination with multiscale graph modeling.
    Wang Y; Kalscheur J; Ebikade E; Li Q; Vlachos DG
    J Cheminform; 2022 Jul; 14(1):43. PubMed ID: 35794646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery.
    Galkin MV; Samec JS
    ChemSusChem; 2016 Jul; 9(13):1544-58. PubMed ID: 27273230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation.
    Weidener D; Dama M; Dietrich SK; Ohrem B; Pauly M; Leitner W; Domínguez de María P; Grande PM; Klose H
    Biotechnol Biofuels; 2020; 13():155. PubMed ID: 32944071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An "ideal lignin" facilitates full biomass utilization.
    Li Y; Shuai L; Kim H; Motagamwala AH; Mobley JK; Yue F; Tobimatsu Y; Havkin-Frenkel D; Chen F; Dixon RA; Luterbacher JS; Dumesic JA; Ralph J
    Sci Adv; 2018 Sep; 4(9):eaau2968. PubMed ID: 30276267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d(6)/pyridine-d(5).
    Kim H; Ralph J
    Org Biomol Chem; 2010 Feb; 8(3):576-91. PubMed ID: 20090974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.