These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 34398606)

  • 21. Glutathione-capped, renal-clearable CuS nanodots for photoacoustic imaging and photothermal therapy.
    Liang G; Jin X; Qin H; Xing D
    J Mater Chem B; 2017 Aug; 5(31):6366-6375. PubMed ID: 32264453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhanced Peroxidase-like Activity of CuS Hollow Nanocages by Plasmon-Induced Hot Carriers and Photothermal Effect for the Dual-Mode Detection of Tannic Acid.
    Wu S; Zhang P; Jiang Z; Zhang W; Gong X; Wang Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):40191-40199. PubMed ID: 36004449
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Driving Oxygen Electrochemistry in Lithium-Oxygen Battery by Local Surface Plasmon Resonance.
    Li F; Zheng LJ; Wang XX; Li ML; Xu JJ; Wang Y
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26123-26133. PubMed ID: 34056904
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO
    Li Y; Wen M; Wang Y; Tian G; Wang C; Zhao J
    Angew Chem Int Ed Engl; 2021 Jan; 60(2):910-916. PubMed ID: 32939926
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface-dependent localized surface plasmon resonances in CuS nanodisks.
    Wei T; Liu Y; Dong W; Zhang Y; Huang C; Sun Y; Chen X; Dai N
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10473-7. PubMed ID: 24138006
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hot Carrier Lifetimes and Electrochemical Water Dissociation Enhanced by Nickel Doping of a Plasmonic Electrocatalyst.
    Wan R; Liu S; Wang Y; Yang Y; Tian Y; Jain PK; Kang X
    Nano Lett; 2022 Oct; 22(19):7819-7825. PubMed ID: 36178334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergy between Plasmonic and Electrocatalytic Activation of Methanol Oxidation on Palladium-Silver Alloy Nanotubes.
    Huang L; Zou J; Ye JY; Zhou ZY; Lin Z; Kang X; Jain PK; Chen S
    Angew Chem Int Ed Engl; 2019 Jun; 58(26):8794-8798. PubMed ID: 31038831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized surface plasmon resonance for enhanced electrocatalysis.
    Zhao J; Xue S; Ji R; Li B; Li J
    Chem Soc Rev; 2021 Nov; 50(21):12070-12097. PubMed ID: 34533143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanistic insights into plasmonic photocatalysts in utilizing visible light.
    Leong KH; Aziz AA; Sim LC; Saravanan P; Jang M; Bahnemann D
    Beilstein J Nanotechnol; 2018; 9():628-648. PubMed ID: 29527438
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Visible to near-infrared plasmon-enhanced catalytic activity of Pd hexagonal nanoplates for the Suzuki coupling reaction.
    Trinh TT; Sato R; Sakamoto M; Fujiyoshi Y; Haruta M; Kurata H; Teranishi T
    Nanoscale; 2015 Aug; 7(29):12435-44. PubMed ID: 26133744
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic-Enhanced Oxygen Reduction Reaction of Silver/Graphene Electrocatalysts.
    Shi F; He J; Zhang B; Peng J; Ma Y; Chen W; Li F; Qin Y; Liu Y; Shang W; Tao P; Song C; Deng T; Qian X; Ye J; Wu J
    Nano Lett; 2019 Feb; 19(2):1371-1378. PubMed ID: 30620607
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic photocatalysis.
    Zhang X; Chen YL; Liu RS; Tsai DP
    Rep Prog Phys; 2013 Apr; 76(4):046401. PubMed ID: 23455654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window.
    Ding X; Liow CH; Zhang M; Huang R; Li C; Shen H; Liu M; Zou Y; Gao N; Zhang Z; Li Y; Wang Q; Li S; Jiang J
    J Am Chem Soc; 2014 Nov; 136(44):15684-93. PubMed ID: 25340966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Generating plasmonic heterostructures by cation exchange and redox reactions of covellite CuS nanocrystals with Au
    Hu C; Chen W; Xie Y; Verma SK; Destro P; Zhan G; Chen X; Zhao X; Schuck PJ; Kriegel I; Manna L
    Nanoscale; 2018 Feb; 10(6):2781-2789. PubMed ID: 29359781
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Covellite CuS nanocrystals: realizing rapid microwave-assisted synthesis in air and unravelling the disappearance of their plasmon resonance after coupling with carbon nanotubes.
    Kim MR; Hafez HA; Chai X; Besteiro LV; Tan L; Ozaki T; Govorov AO; Izquierdo R; Ma D
    Nanoscale; 2016 Jul; 8(26):12946-57. PubMed ID: 27304092
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable and directional plasmonic coupling within semiconductor nanodisk assemblies.
    Hsu SW; Ngo C; Tao AR
    Nano Lett; 2014 May; 14(5):2372-80. PubMed ID: 24738726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation of Silver-Palladium Alloyed Nanoparticles for Plasmonic Catalysis under Visible-Light Illumination.
    Peiris E; Hanauer S; Knapas K; Camargo PHC
    J Vis Exp; 2020 Aug; (162):. PubMed ID: 32894264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Boosting Perovskite Photodetector Performance in NIR Using Plasmonic Bowtie Nanoantenna Arrays.
    Wang B; Zou Y; Lu H; Kong W; Singh SC; Zhao C; Yao C; Xing J; Zheng X; Yu Z; Tong C; Xin W; Yu W; Zhao B; Guo C
    Small; 2020 Jun; 16(24):e2001417. PubMed ID: 32407005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.