These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 34398613)

  • 21. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna.
    Rakhlin M; Klimko G; Sorokin S; Kulagina M; Zadiranov Y; Kazanov D; Shubina T; Ivanov S; Toropov A
    Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate.
    Chen XW; Lee KG; Eghlidi H; Götzinger S; Sandoghdar V
    Opt Express; 2015 Dec; 23(26):32986-92. PubMed ID: 26831966
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength.
    Alizadehkhaledi A; Frencken AL; van Veggel FCJM; Gordon R
    Nano Lett; 2020 Feb; 20(2):1018-1022. PubMed ID: 31891509
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas.
    Huang J; Hu S; Kos D; Xiong Y; Jakob LA; Sánchez-Iglesias A; Guo C; Liz-Marzán LM; Baumberg JJ
    ACS Nano; 2024 Jan; 18(4):3323-3330. PubMed ID: 38215048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources.
    Singh A; de Roque PM; Calbris G; Hugall JT; van Hulst NF
    Nano Lett; 2018 Apr; 18(4):2538-2544. PubMed ID: 29570309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers.
    Sharifi Z; Dobinson M; Hajisalem G; Shariatdoust MS; Frencken AL; van Veggel FCJM; Gordon R
    J Chem Phys; 2021 May; 154(18):184204. PubMed ID: 34241038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unidirectional Meta-Emitters Based on the Kerker Condition Assembled by DNA Origami.
    Yeşilyurt ATM; Sanz-Paz M; Zhu F; Wu X; Sunil KS; Acuna GP; Huang JS
    ACS Nano; 2023 Oct; 17(19):19189-19196. PubMed ID: 37721852
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers.
    Hong C; Yang S; Ndukaife JC
    Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence Enhancement in Topologically Optimized Gallium Phosphide All-Dielectric Nanoantennas.
    Vidal C; Tilmann B; Tiwari S; Raziman TV; Maier SA; Wenger J; Sapienza R
    Nano Lett; 2024 Feb; 24(8):2437-2443. PubMed ID: 38354357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.
    Park YS; Guo S; Makarov NS; Klimov VI
    ACS Nano; 2015 Oct; 9(10):10386-93. PubMed ID: 26312994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale Imaging and Control of Hexagonal Boron Nitride Single Photon Emitters by a Resonant Nanoantenna.
    Palombo Blascetta N; Liebel M; Lu X; Taniguchi T; Watanabe K; Efetov DK; van Hulst NF
    Nano Lett; 2020 Mar; 20(3):1992-1999. PubMed ID: 32053384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deterministic Assembly of Single-Emitter Plasmonic Antenna for Ultrahigh Photoluminescence Enhancement.
    Ma J; Zhang H; Lou Y; Min Q; Wu D; Wang Y; Pang Y
    Nano Lett; 2024 Oct; 24(40):12605-12611. PubMed ID: 39347809
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoluminescence Activation of Organic Dyes via Optically Trapped Quantum Dots.
    Rodríguez-Rodríguez H; Acebrón M; Iborra FJ; Arias-Gonzalez JR; Juárez BH
    ACS Nano; 2019 Jun; 13(6):7223-7230. PubMed ID: 31194513
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unidirectional emission of a quantum dot coupled to a nanoantenna.
    Curto AG; Volpe G; Taminiau TH; Kreuzer MP; Quidant R; van Hulst NF
    Science; 2010 Aug; 329(5994):930-3. PubMed ID: 20724630
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Overcoming the Rate-Directionality Trade-off: A Room-Temperature Ultrabright Quantum Light Source.
    Abudayyeh H; Mildner A; Liran D; Lubotzky B; Lüder L; Fleischer M; Rapaport R
    ACS Nano; 2021 Nov; 15(11):17384-17391. PubMed ID: 34664938
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantum Optical Signature of Plasmonically Coupled Nanocrystal Quantum Dots.
    Wang F; Karan NS; Nguyen HM; Mangum BD; Ghosh Y; Sheehan CJ; Hollingsworth JA; Htoon H
    Small; 2015 Oct; 11(38):5028-34. PubMed ID: 26140499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas.
    Jin RC; Li JQ; Li L; Dong ZG; Liu Y
    Opt Lett; 2019 Jan; 44(2):319-322. PubMed ID: 30644890
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nearly Blinking-Free, High-Purity Single-Photon Emission by Colloidal InP/ZnSe Quantum Dots.
    Chandrasekaran V; Tessier MD; Dupont D; Geiregat P; Hens Z; Brainis E
    Nano Lett; 2017 Oct; 17(10):6104-6109. PubMed ID: 28895398
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission.
    Yu P; Li Z; Wu T; Wang YT; Tong X; Li CF; Wang Z; Wei SH; Zhang Y; Liu H; Fu L; Zhang Y; Wu J; Tan HH; Jagadish C; Wang ZM
    ACS Nano; 2019 Nov; 13(11):13492-13500. PubMed ID: 31689076
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monolithically integrated single quantum dots coupled to bowtie nanoantennas.
    Lyamkina AA; Schraml K; Regler A; Schalk M; Bakarov AK; Toropov AI; Moshchenko SP; Kaniber M
    Opt Express; 2016 Dec; 24(25):28936-28944. PubMed ID: 27958558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.