These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 34398613)
21. Bright Single-Photon Sources for the Telecommunication O-Band Based on an InAs Quantum Dot with (In)GaAs Asymmetric Barriers in a Photonic Nanoantenna. Rakhlin M; Klimko G; Sorokin S; Kulagina M; Zadiranov Y; Kazanov D; Shubina T; Ivanov S; Toropov A Nanomaterials (Basel); 2022 May; 12(9):. PubMed ID: 35564271 [TBL] [Abstract][Full Text] [Related]
22. Enhancing the radiative emission rate of single molecules by a plasmonic nanoantenna weakly coupled with a dielectric substrate. Chen XW; Lee KG; Eghlidi H; Götzinger S; Sandoghdar V Opt Express; 2015 Dec; 23(26):32986-92. PubMed ID: 26831966 [TBL] [Abstract][Full Text] [Related]
23. Isolating Nanocrystals with an Individual Erbium Emitter: A Route to a Stable Single-Photon Source at 1550 nm Wavelength. Alizadehkhaledi A; Frencken AL; van Veggel FCJM; Gordon R Nano Lett; 2020 Feb; 20(2):1018-1022. PubMed ID: 31891509 [TBL] [Abstract][Full Text] [Related]
24. Enhanced Photocurrent and Electrically Pumped Quantum Dot Emission from Single Plasmonic Nanoantennas. Huang J; Hu S; Kos D; Xiong Y; Jakob LA; Sánchez-Iglesias A; Guo C; Liz-Marzán LM; Baumberg JJ ACS Nano; 2024 Jan; 18(4):3323-3330. PubMed ID: 38215048 [TBL] [Abstract][Full Text] [Related]
25. Nanoscale Mapping and Control of Antenna-Coupling Strength for Bright Single Photon Sources. Singh A; de Roque PM; Calbris G; Hugall JT; van Hulst NF Nano Lett; 2018 Apr; 18(4):2538-2544. PubMed ID: 29570309 [TBL] [Abstract][Full Text] [Related]
26. Isolating and enhancing single-photon emitters for 1550 nm quantum light sources using double nanohole optical tweezers. Sharifi Z; Dobinson M; Hajisalem G; Shariatdoust MS; Frencken AL; van Veggel FCJM; Gordon R J Chem Phys; 2021 May; 154(18):184204. PubMed ID: 34241038 [TBL] [Abstract][Full Text] [Related]
27. Unidirectional Meta-Emitters Based on the Kerker Condition Assembled by DNA Origami. Yeşilyurt ATM; Sanz-Paz M; Zhu F; Wu X; Sunil KS; Acuna GP; Huang JS ACS Nano; 2023 Oct; 17(19):19189-19196. PubMed ID: 37721852 [TBL] [Abstract][Full Text] [Related]
28. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Hong C; Yang S; Ndukaife JC Nat Nanotechnol; 2020 Nov; 15(11):908-913. PubMed ID: 32868919 [TBL] [Abstract][Full Text] [Related]
30. Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots. Park YS; Guo S; Makarov NS; Klimov VI ACS Nano; 2015 Oct; 9(10):10386-93. PubMed ID: 26312994 [TBL] [Abstract][Full Text] [Related]
31. Nanoscale Imaging and Control of Hexagonal Boron Nitride Single Photon Emitters by a Resonant Nanoantenna. Palombo Blascetta N; Liebel M; Lu X; Taniguchi T; Watanabe K; Efetov DK; van Hulst NF Nano Lett; 2020 Mar; 20(3):1992-1999. PubMed ID: 32053384 [TBL] [Abstract][Full Text] [Related]
32. Deterministic Assembly of Single-Emitter Plasmonic Antenna for Ultrahigh Photoluminescence Enhancement. Ma J; Zhang H; Lou Y; Min Q; Wu D; Wang Y; Pang Y Nano Lett; 2024 Oct; 24(40):12605-12611. PubMed ID: 39347809 [TBL] [Abstract][Full Text] [Related]
37. Dual-mode subwavelength trapping by plasmonic tweezers based on V-type nanoantennas. Jin RC; Li JQ; Li L; Dong ZG; Liu Y Opt Lett; 2019 Jan; 44(2):319-322. PubMed ID: 30644890 [TBL] [Abstract][Full Text] [Related]
39. Nanowire Quantum Dot Surface Engineering for High Temperature Single Photon Emission. Yu P; Li Z; Wu T; Wang YT; Tong X; Li CF; Wang Z; Wei SH; Zhang Y; Liu H; Fu L; Zhang Y; Wu J; Tan HH; Jagadish C; Wang ZM ACS Nano; 2019 Nov; 13(11):13492-13500. PubMed ID: 31689076 [TBL] [Abstract][Full Text] [Related]