These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34399028)

  • 1. Characterization of carotenoid biosynthetic pathway genes in the pea aphid (Acyrthosiphon pisum) revealed by heterologous complementation and RNA interference assays.
    Ding BY; Xie XC; Shang F; Smagghe G; Niu JZ; Wang JJ
    Insect Sci; 2022 Jun; 29(3):645-656. PubMed ID: 34399028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential regulation of the Tor gene homolog drives the red/green pigmentation phenotype in the aphid Myzuspersicae.
    Trissi N; Troczka BJ; Ozsanlav-Harris L; Singh KS; Mallott M; Aishwarya V; O'Reilly A; Bass C; Wilding CS
    Insect Biochem Mol Biol; 2023 Feb; 153():103896. PubMed ID: 36587809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Geranylgeranyl Diphosphate Synthase Gene in
    Ding BY; Niu J; Shang F; Yang L; Chang TY; Wang JJ
    Front Physiol; 2019; 10():1398. PubMed ID: 31780956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of the whole carotenoid biosynthetic pathway of aphids at the gene level and arthropodal food chain involving aphids and the red dragonfly.
    Takemura M; Maoka T; Koyanagi T; Kawase N; Nishida R; Tsuchida T; Hironaka M; Ueda T; Misawa N
    BMC Zool; 2021 Jun; 6(1):19. PubMed ID: 37170139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parental silencing of a horizontally transferred carotenoid desaturase gene causes a reduction of red pigment and fitness in the pea aphid.
    Ding BY; Niu J; Shang F; Yang L; Zhang W; Smagghe G; Wang JJ
    Pest Manag Sci; 2020 Jul; 76(7):2423-2433. PubMed ID: 32056367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya.
    Shen YH; Yang FY; Lu BG; Zhao WW; Jiang T; Feng L; Chen XJ; Ming R
    BMC Genomics; 2019 Jan; 20(1):49. PubMed ID: 30651061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carotenoid biosynthesis and the evolution of carotenogenesis genes in rust fungi.
    Wang E; Dong C; Zhang P; Roberts TH; Park RF
    Fungal Biol; 2021 May; 125(5):400-411. PubMed ID: 33910681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carotenoid Biosynthesis in Animals: Case of Arthropods.
    Misawa N; Takemura M; Maoka T
    Adv Exp Med Biol; 2021; 1261():217-220. PubMed ID: 33783744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum.
    Heider SA; Peters-Wendisch P; Wendisch VF
    BMC Microbiol; 2012 Sep; 12():198. PubMed ID: 22963379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional response and functional analysis of ATP-binding cassette transporters to tannic acid in pea aphid, Acyrthosiphon pisum (Harris).
    Liu L; Hong B; Wei JW; Wu YT; Song LW; Wang SS
    Int J Biol Macromol; 2022 Nov; 220():250-257. PubMed ID: 35981673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production.
    Ravanello MP; Ke D; Alvarez J; Huang B; Shewmaker CK
    Metab Eng; 2003 Oct; 5(4):255-63. PubMed ID: 14642353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterologous carotenoid-biosynthetic enzymes: functional complementation and effects on carotenoid profiles in Escherichia coli.
    Song GH; Kim SH; Choi BH; Han SJ; Lee PC
    Appl Environ Microbiol; 2013 Jan; 79(2):610-8. PubMed ID: 23144136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological role of β-carotene monohydroxylase (CYP97H1) in carotenoid biosynthesis in Euglena gracilis.
    Tamaki S; Kato S; Shinomura T; Ishikawa T; Imaishi H
    Plant Sci; 2019 Jan; 278():80-87. PubMed ID: 30471732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitric oxide synthase is required for the pea aphid's defence against bacterial infection.
    Ma L; Yan X; Zhou L; Wang W; Chen K; Hao C; Lu Z; Qie X
    Insect Mol Biol; 2023 Apr; 32(2):187-199. PubMed ID: 36527288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress in pea seedling leaves in response to Acyrthosiphon pisum infestation.
    Mai VC; Bednarski W; Borowiak-Sobkowiak B; Wilkaniec B; Samardakiewicz S; Morkunas I
    Phytochemistry; 2013 Sep; 93():49-62. PubMed ID: 23566717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carotenoids in unexpected places: gall midges, lateral gene transfer, and carotenoid biosynthesis in animals.
    Cobbs C; Heath J; Stireman JO; Abbot P
    Mol Phylogenet Evol; 2013 Aug; 68(2):221-8. PubMed ID: 23542649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C(30), C(35), C(40), C(45), C(50) carotenoids.
    Wang F; Jiang JG; Chen Q
    Biotechnol Adv; 2007; 25(3):211-22. PubMed ID: 17257797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Markers of resistance to pea aphid,
    Nikolova IM
    J Environ Sci Health B; 2024; 59(2):37-49. PubMed ID: 38088334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversification of genes for carotenoid biosynthesis in aphids following an ancient transfer from a fungus.
    Nováková E; Moran NA
    Mol Biol Evol; 2012 Jan; 29(1):313-23. PubMed ID: 21878683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of al-2 mutations in Neurospora.
    Díaz-Sánchez V; Estrada AF; Trautmann D; Limón MC; Al-Babili S; Avalos J
    PLoS One; 2011; 6(7):e21948. PubMed ID: 21818281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.