These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34399103)

  • 21. Cerato-populin and cerato-platanin, two non-catalytic proteins from phytopathogenic fungi, interact with hydrophobic inanimate surfaces and leaves.
    Martellini F; Faoro F; Carresi L; Pantera B; Baccelli I; Maffi D; Tiribilli B; Sbrana F; Luti S; Comparini C; Bernardi R; Cappugi G; Scala A; Pazzagli L
    Mol Biotechnol; 2013 Sep; 55(1):27-42. PubMed ID: 23117544
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A mechanistic model may explain the dissimilar biological efficiency of the fungal elicitors cerato-platanin and cerato-populin.
    Baroni F; Gallo M; Pazzagli L; Luti S; Baccelli I; Spisni A; Pertinhez TA
    Biochim Biophys Acta Gen Subj; 2021 May; 1865(5):129843. PubMed ID: 33444726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fungal Hydrophobin Proteins Produce Self-Assembling Protein Films with Diverse Structure and Chemical Stability.
    Lo VC; Ren Q; Pham CL; Morris VK; Kwan AH; Sunde M
    Nanomaterials (Basel); 2014 Sep; 4(3):827-843. PubMed ID: 28344251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phylogeny and molecular dating of the cerato-platanin-encoding genes.
    Yu H; Li L
    Genet Mol Biol; 2014 Jun; 37(2):423-7. PubMed ID: 25071408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrophobins: the protein-amphiphiles of filamentous fungi.
    Linder MB; Szilvay GR; Nakari-Setälä T; Penttilä ME
    FEMS Microbiol Rev; 2005 Nov; 29(5):877-96. PubMed ID: 16219510
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cerato-platanins: elicitors and effectors.
    Pazzagli L; Seidl-Seiboth V; Barsottini M; Vargas WA; Scala A; Mukherjee PK
    Plant Sci; 2014 Nov; 228():79-87. PubMed ID: 25438788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth of marine fungi on polymeric substrates.
    Wang Y; Barth D; Tamminen A; Wiebe MG
    BMC Biotechnol; 2016 Jan; 16():3. PubMed ID: 26772742
    [TBL] [Abstract][Full Text] [Related]  

  • 28. COMPARATIVE PHYSIOCHEMICAL ANALYSIS OF HYDROPHOBINS PRODUCED IN ESCHERICHIA COLI AND PICHIA PASTORIS.
    Przylucka A; Akcapinar GB; Bonazza K; Mello-de-Sousa TM; Mach-Aigner AR; Lobanov V; Grothe H; Kubicek CP; Reimhult E; Druzhinina IS
    Colloids Surf B Biointerfaces; 2017 Nov; 159():913-923. PubMed ID: 28903187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of class II hydrophobins on polar surfaces.
    Grunér MS; Szilvay GR; Berglin M; Lienemann M; Laaksonen P; Linder MB
    Langmuir; 2012 Mar; 28(9):4293-300. PubMed ID: 22315927
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Involvement of the Fusarium graminearum cerato-platanin proteins in fungal growth and plant infection.
    Quarantin A; Glasenapp A; Schäfer W; Favaron F; Sella L
    Plant Physiol Biochem; 2016 Dec; 109():220-229. PubMed ID: 27744264
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extracellular proteins of Trametes hirsuta st. 072 induced by copper ions and a lignocellulose substrate.
    Vasina DV; Pavlov AR; Koroleva OV
    BMC Microbiol; 2016 Jun; 16(1):106. PubMed ID: 27296712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Formation and elasticity of membranes of the class II hydrophobin Cerato-ulmin at oil-water interfaces.
    Zhang X; Kirby SM; Chen Y; Anna SL; Walker LM; Hung FR; Russo PS
    Colloids Surf B Biointerfaces; 2018 Apr; 164():98-106. PubMed ID: 29413625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces.
    Cheng Y; Wang B; Wang Y; Zhang H; Liu C; Yang L; Chen Z; Wang Y; Yang H; Wang Z
    J Colloid Interface Sci; 2020 Aug; 573():384-395. PubMed ID: 32298932
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Involvement of ionic interactions in self-assembly and resultant rodlet formation of class I hydrophobin RolA from Aspergillus oryzae.
    Takahashi N; Terauchi Y; Tanaka T; Yoshimi A; Yabu H; Abe K
    Biosci Biotechnol Biochem; 2023 Jul; 87(8):857-864. PubMed ID: 37253619
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Applications of hydrophobins: current state and perspectives.
    Wösten HA; Scholtmeijer K
    Appl Microbiol Biotechnol; 2015 Feb; 99(4):1587-97. PubMed ID: 25564034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Fusarium graminearum cerato-platanins loosen cellulose substrates enhancing fungal cellulase activity as expansin-like proteins.
    Quarantin A; Castiglioni C; Schäfer W; Favaron F; Sella L
    Plant Physiol Biochem; 2019 Jun; 139():229-238. PubMed ID: 30913532
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea.
    Mosbach A; Leroch M; Mendgen KW; Hahn M
    BMC Microbiol; 2011 Jan; 11():10. PubMed ID: 21232149
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Marine macroalgae: an untapped resource for producing fuels and chemicals.
    Wei N; Quarterman J; Jin YS
    Trends Biotechnol; 2013 Feb; 31(2):70-7. PubMed ID: 23245657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predicting the self-assembly film structure of class II hydrophobin NC2 and estimating its structural characteristics.
    Chang HJ; Choi H; Na S
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111269. PubMed ID: 32739772
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polysaccharide-Degrading Enzymes From Marine Gastropods.
    Ojima T; Rahman MM; Kumagai Y; Nishiyama R; Narsico J; Inoue A
    Methods Enzymol; 2018; 605():457-497. PubMed ID: 29909835
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.