These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34399141)
41. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation. Liang C; Qiao JQ; Lian HZ J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597 [TBL] [Abstract][Full Text] [Related]
42. Peak capacity in gradient reversed-phase liquid chromatography of biopolymers. Theoretical and practical implications for the separation of oligonucleotides. Gilar M; Neue UD J Chromatogr A; 2007 Oct; 1169(1-2):139-50. PubMed ID: 17897658 [TBL] [Abstract][Full Text] [Related]
43. On the inherent data fitting problems encountered in modeling retention behavior of analytes with dual retention mechanism. Tyteca E; Desmet G J Chromatogr A; 2015 Jul; 1403():81-95. PubMed ID: 26044381 [TBL] [Abstract][Full Text] [Related]
44. Combined effect of temperature and organic modifier concentration on the retention under single mode gradient conditions in reversed-phase HPLC. Pappa-Louisi A; Nikitas P; Zisi C; Papachristos K J Sep Sci; 2008 Sep; 31(16-17):2953-61. PubMed ID: 18785145 [TBL] [Abstract][Full Text] [Related]
45. General theory of peak compression in liquid chromatography. Gritti F J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599 [TBL] [Abstract][Full Text] [Related]
46. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
47. Measuring and using scanning-gradient data for use in method optimization for liquid chromatography. den Uijl MJ; Schoenmakers PJ; Schulte GK; Stoll DR; van Bommel MR; Pirok BWJ J Chromatogr A; 2021 Jan; 1636():461780. PubMed ID: 33360860 [TBL] [Abstract][Full Text] [Related]
48. Multimode gradient elution in reversed-phase liquid chromatography: application to retention prediction and separation optimization of a set of amino acids in gradient runs involving simultaneous variations of mobile-phase composition, flow rate, and temperature. Pappa-Louisi A; Nikitas P; Papachristos K; Balkatzopoulou P Anal Chem; 2009 Feb; 81(3):1217-23. PubMed ID: 19123773 [TBL] [Abstract][Full Text] [Related]
49. Prediction of gradient retention data for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides. Vaňková N; Česla P J Chromatogr A; 2017 Feb; 1485():82-89. PubMed ID: 28108080 [TBL] [Abstract][Full Text] [Related]
50. Some insights on the description of gradient elution in reversed-phase liquid chromatography. Baeza-Baeza JJ; García-Álvarez-Coque MC J Sep Sci; 2014 Sep; 37(17):2269-77. PubMed ID: 24945785 [TBL] [Abstract][Full Text] [Related]
51. Retention prediction of highly polar ionizable solutes under gradient conditions on a mixed-mode reversed-phase and weak anion-exchange stationary phase. Balkatzopoulou P; Fasoula S; Gika H; Nikitas P; Pappa-Louisi A J Chromatogr A; 2015 May; 1396():72-6. PubMed ID: 25900744 [TBL] [Abstract][Full Text] [Related]
52. Optimisation of gradient elution with serially-coupled columns. Part I: single linear gradients. Ortiz-Bolsico C; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2014 Jul; 1350():51-60. PubMed ID: 24891161 [TBL] [Abstract][Full Text] [Related]
53. Estimation of peak capacity based on peak simulation. Navarro-Huerta JA; Torres-Lapasió JR; García-Alvarez-Coque MC J Chromatogr A; 2018 Nov; 1574():101-113. PubMed ID: 30220426 [TBL] [Abstract][Full Text] [Related]
54. Performance comparison of nonlinear and linear regression algorithms coupled with different attribute selection methods for quantitative structure - retention relationships modelling in micellar liquid chromatography. Krmar J; Vukićević M; Kovačević A; Protić A; Zečević M; Otašević B J Chromatogr A; 2020 Jul; 1623():461146. PubMed ID: 32505269 [TBL] [Abstract][Full Text] [Related]
55. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles. Wang N; Boswell PG J Chromatogr A; 2017 Oct; 1520():75-82. PubMed ID: 28864110 [TBL] [Abstract][Full Text] [Related]
56. Retention time and peak width in the combined pH/organic modifier gradient high performance liquid chromatography. Wiczling P; Kaliszan R J Chromatogr A; 2010 May; 1217(20):3375-81. PubMed ID: 20347447 [TBL] [Abstract][Full Text] [Related]
57. Retention times and bandwidths in reversed-phase gradient liquid chromatography of peptides and proteins. Jandera P; Kučerová Z; Urban J J Chromatogr A; 2011 Dec; 1218(49):8874-89. PubMed ID: 21742334 [TBL] [Abstract][Full Text] [Related]
58. A methodology employing retention modeling for achieving control space in liquid chromatography method development using quality by design approach. Jayaraman K; Rajendran AK; Kumar GS; Bhutani H J Chromatogr A; 2021 Jan; 1635():461658. PubMed ID: 33333351 [TBL] [Abstract][Full Text] [Related]
59. The influence of injection volume on efficiency of microbore liquid chromatography columns for gradient and isocratic elution. Werres T; Schmidt TC; Teutenberg T J Chromatogr A; 2021 Mar; 1641():461965. PubMed ID: 33611125 [TBL] [Abstract][Full Text] [Related]