BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 34399234)

  • 1. Coming full circle: In vivo Veritas, or expanding the neuroscience frontier.
    Khiroug L; Verkhratsky A
    Cell Calcium; 2021 Sep; 98():102452. PubMed ID: 34399234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HOPE: Hybrid-Drive Combining Optogenetics, Pharmacology and Electrophysiology.
    Delcasso S; Denagamage S; Britton Z; Graybiel AM
    Front Neural Circuits; 2018; 12():41. PubMed ID: 29872379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging.
    Desjardins M; Kılıç K; Thunemann M; Mateo C; Holland D; Ferri CGL; Cremonesi JA; Li B; Cheng Q; Weldy KL; Saisan PA; Kleinfeld D; Komiyama T; Liu TT; Bussell R; Wong EC; Scadeng M; Dunn AK; Boas DA; Sakadžić S; Mandeville JB; Buxton RB; Dale AM; Devor A
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Jun; 4(6):533-542. PubMed ID: 30691968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. All-optical electrophysiology in behaving animals.
    Adam Y
    J Neurosci Methods; 2021 Apr; 353():109101. PubMed ID: 33600851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope.
    Szabo V; Ventalon C; De Sars V; Bradley J; Emiliani V
    Neuron; 2014 Dec; 84(6):1157-69. PubMed ID: 25433638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stereotaxic endoscopy for the ocular imaging of awake, freely moving animal models.
    Paulson B; Lee S; Jue M; Lee K; Lee S; Kim GB; Moon Y; Lee JY; Kim N; Kim JK
    J Biophotonics; 2020 May; 13(5):e201960188. PubMed ID: 32017450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-density optrodes for multi-scale electrophysiology and optogenetic stimulation.
    Chamanzar M; Borysov M; Maharbiz MM; Blanche TJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6838-41. PubMed ID: 25571567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics.
    Kim TI; McCall JG; Jung YH; Huang X; Siuda ER; Li Y; Song J; Song YM; Pao HA; Kim RH; Lu C; Lee SD; Song IS; Shin G; Al-Hasani R; Kim S; Tan MP; Huang Y; Omenetto FG; Rogers JA; Bruchas MR
    Science; 2013 Apr; 340(6129):211-6. PubMed ID: 23580530
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic identification of striatal projection neuron subtypes during in vivo recordings.
    Kravitz AV; Owen SF; Kreitzer AC
    Brain Res; 2013 May; 1511():21-32. PubMed ID: 23178332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-optic implantation for chronic optogenetic stimulation of brain tissue.
    Ung K; Arenkiel BR
    J Vis Exp; 2012 Oct; (68):e50004. PubMed ID: 23128465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetics Identification of a Neuronal Type with a Glass Optrode in Awake Mice.
    Ono M; Muramoto S; Ma L; Kato N
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurophysiological Assessment of Huntington's Disease Model Mice.
    Donzis EJ; Holley SM; Cepeda C; Levine MS
    Methods Mol Biol; 2018; 1780():163-177. PubMed ID: 29856019
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A starting kit for training and establishing in vivo electrophysiology, intracranial pharmacology, and optogenetics.
    Eriksson D; Schneck M; Schneider A; Coulon P; Diester I
    J Neurosci Methods; 2020 Apr; 336():108636. PubMed ID: 32081674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Imaging-Based Guidance of Viral Microinjections and Insertion of a Laminar Electrophysiology Probe Into a Predetermined Barrel in Mouse Area S1BF.
    Mocanu VM; Shmuel A
    Front Neural Circuits; 2021; 15():541676. PubMed ID: 34054436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined Optogenetic and Chemogenetic Control of Neurons.
    Berglund K; Tung JK; Higashikubo B; Gross RE; Moore CI; Hochgeschwender U
    Methods Mol Biol; 2016; 1408():207-25. PubMed ID: 26965125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Imaging and Manipulating Pituitary Function in the Awake Mouse.
    Hoa O; Lafont C; Fontanaud P; Guillou A; Kemkem Y; Kineman RD; Luque RM; Fiordelisio Coll T; Le Tissier P; Mollard P
    Endocrinology; 2019 Oct; 160(10):2271-2281. PubMed ID: 31329247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A coaxial optrode as multifunction write-read probe for optogenetic studies in non-human primates.
    Ozden I; Wang J; Lu Y; May T; Lee J; Goo W; O'Shea DJ; Kalanithi P; Diester I; Diagne M; Deisseroth K; Shenoy KV; Nurmikko AV
    J Neurosci Methods; 2013 Sep; 219(1):142-54. PubMed ID: 23867081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A non-invasive head-holding device for chronic neural recordings in awake behaving monkeys.
    Amemori S; Amemori K; Cantor ML; Graybiel AM
    J Neurosci Methods; 2015 Jan; 240():154-60. PubMed ID: 25448381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic manipulation of neural circuits in awake marmosets.
    MacDougall M; Nummela SU; Coop S; Disney A; Mitchell JF; Miller CT
    J Neurophysiol; 2016 Sep; 116(3):1286-94. PubMed ID: 27334951
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.