These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
261 related articles for article (PubMed ID: 34399269)
1. An effective strategy for the monitoring of microplastics in complex aquatic matrices: Exploiting the potential of near infrared hyperspectral imaging (NIR-HSI). Piarulli S; Malegori C; Grasselli F; Airoldi L; Prati S; Mazzeo R; Sciutto G; Oliveri P Chemosphere; 2022 Jan; 286(Pt 3):131861. PubMed ID: 34399269 [TBL] [Abstract][Full Text] [Related]
2. Rapid and direct detection of small microplastics in aquatic samples by a new near infrared hyperspectral imaging (NIR-HSI) method. Piarulli S; Sciutto G; Oliveri P; Malegori C; Prati S; Mazzeo R; Airoldi L Chemosphere; 2020 Dec; 260():127655. PubMed ID: 32688326 [TBL] [Abstract][Full Text] [Related]
3. Developing and testing a workflow to identify microplastics using near infrared hyperspectral imaging. Faltynkova A; Wagner M Chemosphere; 2023 Sep; 336():139186. PubMed ID: 37354961 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive and fast microplastics identification based on near-infrared hyperspectral imaging (HSI-NIR) and chemometrics. Vidal C; Pasquini C Environ Pollut; 2021 Sep; 285():117251. PubMed ID: 33957518 [TBL] [Abstract][Full Text] [Related]
5. Use of an uncrewed surface vehicle and near infrared hyperspectral imaging for sampling and analysis of aquatic microplastics. Faltynkova A; Deschênes CE; Zolich A; Wagner M; Johansen TA; Johnsen G Mar Pollut Bull; 2024 Apr; 201():116214. PubMed ID: 38457875 [TBL] [Abstract][Full Text] [Related]
6. Hyperspectral Imaging Based Method for Rapid Detection of Microplastics in the Intestinal Tracts of Fish. Zhang Y; Wang X; Shan J; Zhao J; Zhang W; Liu L; Wu F Environ Sci Technol; 2019 May; 53(9):5151-5158. PubMed ID: 30955331 [TBL] [Abstract][Full Text] [Related]
7. Characterization of microplastics on filter substrates based on hyperspectral imaging: Laboratory assessments. Zhu C; Kanaya Y; Nakajima R; Tsuchiya M; Nomaki H; Kitahashi T; Fujikura K Environ Pollut; 2020 Aug; 263(Pt B):114296. PubMed ID: 32222664 [TBL] [Abstract][Full Text] [Related]
8. Hyperspectral Imaging as a Potential Online Detection Method of Microplastics. Huang H; Qureshi JU; Liu S; Sun Z; Zhang C; Wang H Bull Environ Contam Toxicol; 2021 Oct; 107(4):754-763. PubMed ID: 32556690 [TBL] [Abstract][Full Text] [Related]
9. Classification and distribution of freshwater microplastics along the Italian Po river by hyperspectral imaging. Fiore L; Serranti S; Mazziotti C; Riccardi E; Benzi M; Bonifazi G Environ Sci Pollut Res Int; 2022 Jul; 29(32):48588-48606. PubMed ID: 35195863 [TBL] [Abstract][Full Text] [Related]
10. Microplastics in agricultural drainage water: A link between terrestrial and aquatic microplastic pollution. Bigalke M; Fieber M; Foetisch A; Reynes J; Tollan P Sci Total Environ; 2022 Feb; 806(Pt 4):150709. PubMed ID: 34600992 [TBL] [Abstract][Full Text] [Related]
11. Beach morphodynamics and its relationship with the deposition of plastic particles: A preliminary study in southeastern Brazil. Tsukada E; Fernandes E; Vidal C; Salla RF Mar Pollut Bull; 2021 Nov; 172():112809. PubMed ID: 34365157 [TBL] [Abstract][Full Text] [Related]
12. Development of robust models for rapid classification of microplastic polymer types based on near infrared hyperspectral images. Kitahashi T; Nakajima R; Nomaki H; Tsuchiya M; Yabuki A; Yamaguchi S; Zhu C; Kanaya Y; Lindsay DJ; Chiba S; Fujikura K Anal Methods; 2021 May; 13(19):2215-2222. PubMed ID: 33908466 [TBL] [Abstract][Full Text] [Related]
13. Extraction and detection methods of microplastics in food and marine systems: A critical review. Sridhar A; Kannan D; Kapoor A; Prabhakar S Chemosphere; 2022 Jan; 286(Pt 1):131653. PubMed ID: 34346338 [TBL] [Abstract][Full Text] [Related]
14. A review of methods for measuring microplastics in aquatic environments. Mai L; Bao LJ; Shi L; Wong CS; Zeng EY Environ Sci Pollut Res Int; 2018 Apr; 25(12):11319-11332. PubMed ID: 29536421 [TBL] [Abstract][Full Text] [Related]
15. The relationship between microplastics in eastern oysters (Crassostrea virginica) and surrounding environmental compartments in Long Island Sound. Mladinich K; Holohan BA; Shumway SE; Ward JE Mar Environ Res; 2023 Jul; 189():106040. PubMed ID: 37321021 [TBL] [Abstract][Full Text] [Related]
16. Near-infrared hyperspectral imaging (NIR-HSI) and normalized difference image (NDI) data processing: An advanced method to map collagen in archaeological bones. Lugli F; Sciutto G; Oliveri P; Malegori C; Prati S; Gatti L; Silvestrini S; Romandini M; Catelli E; Casale M; Talamo S; Iacumin P; Benazzi S; Mazzeo R Talanta; 2021 May; 226():122126. PubMed ID: 33676680 [TBL] [Abstract][Full Text] [Related]
17. Analysis of microplastics of a broad size range in commercially important mussels by combining FTIR and Raman spectroscopy approaches. Vinay Kumar BN; Löschel LA; Imhof HK; Löder MGJ; Laforsch C Environ Pollut; 2021 Jan; 269():116147. PubMed ID: 33280916 [TBL] [Abstract][Full Text] [Related]
18. Juvenile fish caging as a tool for assessing microplastics contamination in estuarine fish nursery grounds. Kazour M; Jemaa S; El Rakwe M; Duflos G; Hermabassiere L; Dehaut A; Le Bihanic F; Cachot J; Cornille V; Rabhi K; Khalaf G; Amara R Environ Sci Pollut Res Int; 2020 Feb; 27(4):3548-3559. PubMed ID: 30324374 [TBL] [Abstract][Full Text] [Related]
19. Microplastics in aquatic environment: characterization, ecotoxicological effect, implications for ecosystems and developments in South Africa. Pereao O; Opeolu B; Fatoki O Environ Sci Pollut Res Int; 2020 Jun; 27(18):22271-22291. PubMed ID: 32335826 [TBL] [Abstract][Full Text] [Related]
20. High-throughput NIR spectroscopic (NIRS) detection of microplastics in soil. Paul A; Wander L; Becker R; Goedecke C; Braun U Environ Sci Pollut Res Int; 2019 Mar; 26(8):7364-7374. PubMed ID: 29754299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]