These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34399342)

  • 1. Uptake, translocation and subcellular distribution of chlorantraniliprole and tetrachlorantraniliprole in maize.
    Fan T; Chen X; Zhao M; Wang J; Meng Z; Dong S; Miao X; Wu Q
    Sci Total Environ; 2021 Dec; 800():149429. PubMed ID: 34399342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Absorption, metabolism and distribution of carbosulfan in maize plants (Zea mays L.).
    Shi L; Lang H; Shen J; Shen F; Song J; Zhang L; Fang H; Yu Y
    Pest Manag Sci; 2023 Oct; 79(10):3926-3933. PubMed ID: 37245216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake, translocation, and debromination of polybrominated diphenyl ethers in maize.
    Zhao M; Zhang S; Wang S; Huang H
    J Environ Sci (China); 2012; 24(3):402-9. PubMed ID: 22655352
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake, Translocation, and Subcellular Distribution of Azoxystrobin in Wheat Plant ( Triticum aestivum L.).
    Ju C; Zhang H; Yao S; Dong S; Cao D; Wang F; Fang H; Yu Y
    J Agric Food Chem; 2019 Jun; 67(24):6691-6699. PubMed ID: 31135152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uptake, translocation and biotransformation kinetics of BDE-47, 6-OH-BDE-47 and 6-MeO-BDE-47 in maize (Zea mays L.).
    Xu X; Wen B; Huang H; Wang S; Han R; Zhang S
    Environ Pollut; 2016 Jan; 208(Pt B):714-22. PubMed ID: 26561454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L.) plants.
    Ullah H; Li X; Peng L; Cai Y; Mielke HW
    Sci Total Environ; 2020 Oct; 737():139558. PubMed ID: 32512294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uptake, Translocation, and Subcellular Distribution of Oxathiapiprolin and Famoxadone in Tomato Plants (
    Feng X; Liu G; Wang X; An K; Guo Y; Liu Y; Dong J
    J Agric Food Chem; 2022 Oct; 70(39):12310-12319. PubMed ID: 36134436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AtLHT1 Transporter Can Facilitate the Uptake and Translocation of a Glycinergic-Chlorantraniliprole Conjugate in Arabidopsis thaliana.
    Chen Y; Yan Y; Ren ZF; Ganeteg U; Yao GK; Li ZL; Huang T; Li JH; Tian YQ; Lin F; Xu HH
    J Agric Food Chem; 2018 Nov; 66(47):12527-12535. PubMed ID: 30403859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake, translocation and distribution of cyantraniliprole in rice planting system.
    Zhang C; Fang N; Li Y; Wang X; He H; Jiang J; Tang T; Xu Z; Zhao X; Li Y
    J Hazard Mater; 2022 Aug; 436():129125. PubMed ID: 35739695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uptake and distribution of phenanthrene and pyrene in roots and shoots of maize (Zea mays L.).
    Houshani M; Salehi-Lisar SY; Motafakkerazad R; Movafeghi A
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9938-9944. PubMed ID: 30739292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uptake and translocation of triadimefon by wheat (Triticum aestivum L.) grown in hydroponics and soil conditions.
    Sumei Y; Xin L; Shuhong H; Hongchao Z; Maojun J; Yongquan Z; Luqing Z; Yunlong Y
    J Hazard Mater; 2022 Feb; 423(Pt A):127011. PubMed ID: 34461532
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intra-specific variability in the response of maize to arsenic exposure.
    Requejo R; Tena M
    Environ Sci Pollut Res Int; 2014 Sep; 21(18):10574-82. PubMed ID: 24894756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake, subcellular distribution, and translocation of foliar-applied phosphorus: Short-term effects on ion relations in deficient young maize plants.
    Görlach BM; Sagervanshi A; Henningsen JN; Pitann B; Mühling KH
    Plant Physiol Biochem; 2021 Sep; 166():677-688. PubMed ID: 34214778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Availability of ferrocyanide and ferricyanide complexes as a nitrogen source to cyanogenic plants.
    Yu XZ; Gu JD; Li TP
    Arch Environ Contam Toxicol; 2008 Aug; 55(2):229-37. PubMed ID: 18180862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae).
    Pes MP; Melo AA; Stacke RS; Zanella R; Perini CR; Silva FMA; Carús Guedes JV
    PLoS One; 2020; 15(4):e0229151. PubMed ID: 32236101
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L.
    Zhang C; Xue J; Cheng D; Feng Y; Liu Y; Aly HM; Li Z
    Environ Pollut; 2019 Jul; 250():47-57. PubMed ID: 30981935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in uptake and translocation of selenate and selenite by the weeping willow and hybrid willow.
    Yu XZ; Gu JD
    Environ Sci Pollut Res Int; 2008 Sep; 15(6):499-508. PubMed ID: 18719961
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variations of root-associated bacterial cooccurrence relationships in paddy soils under chlorantraniliprole (CAP) stress.
    Wang C; Qin Y; Li Y; Wu R; Zhu D; Zhou F; Xu F
    Sci Total Environ; 2021 Jul; 779():146247. PubMed ID: 33743468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.).
    Chen J; Dou R; Yang Z; Wang X; Mao C; Gao X; Wang L
    Nanotoxicology; 2016 Aug; 10(6):818-28. PubMed ID: 26694806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize plant (Zea mays) uptake of organophosphorus and novel brominated flame retardants from hydroponic cultures.
    Bonato T; Beggio G; Pivato A; Piazza R
    Chemosphere; 2022 Jan; 287(Pt 4):132456. PubMed ID: 34606891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.