These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 34399483)

  • 41. Brewing coral terpenes-A yeast based approach to soft coral terpene cyclases.
    Scesa PD; Schmidt EW
    Methods Enzymol; 2024; 699():373-394. PubMed ID: 38942511
    [TBL] [Abstract][Full Text] [Related]  

  • 42. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida.
    Mi J; Becher D; Lubuta P; Dany S; Tusch K; Schewe H; Buchhaupt M; Schrader J
    Microb Cell Fact; 2014 Dec; 13():170. PubMed ID: 25471523
    [TBL] [Abstract][Full Text] [Related]  

  • 43. De novo biosynthesis of anthocyanins in Saccharomyces cerevisiae.
    Eichenberger M; Hansson A; Fischer D; Dürr L; Naesby M
    FEMS Yeast Res; 2018 Jun; 18(4):. PubMed ID: 29771352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes.
    Liu J; Lin M; Han P; Yao G; Jiang H
    Microorganisms; 2024 Mar; 12(4):. PubMed ID: 38674649
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural and modified promoters for tailored metabolic engineering of the yeast Saccharomyces cerevisiae.
    Hubmann G; Thevelein JM; Nevoigt E
    Methods Mol Biol; 2014; 1152():17-42. PubMed ID: 24744025
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Engineering the Saccharomyces cerevisiae isoprenoid pathway for de novo production of aromatic monoterpenes in wine.
    Herrero O; Ramón D; Orejas M
    Metab Eng; 2008 Mar; 10(2):78-86. PubMed ID: 18155949
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Terpene bioconversion--how does its future look?
    Krings U; Berger RG
    Nat Prod Commun; 2010 Sep; 5(9):1507-22. PubMed ID: 20923013
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Overproduction of geraniol by enhanced precursor supply in Saccharomyces cerevisiae.
    Liu J; Zhang W; Du G; Chen J; Zhou J
    J Biotechnol; 2013 Dec; 168(4):446-51. PubMed ID: 24161921
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic engineering of yeast for production of fuels and chemicals.
    Nielsen J; Larsson C; van Maris A; Pronk J
    Curr Opin Biotechnol; 2013 Jun; 24(3):398-404. PubMed ID: 23611565
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway.
    Kim JE; Jang IS; Son SH; Ko YJ; Cho BK; Kim SC; Lee JY
    Metab Eng; 2019 Dec; 56():50-59. PubMed ID: 31445083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of 11-carbon terpenoids in yeast using protein and metabolic engineering.
    Ignea C; Pontini M; Motawia MS; Maffei ME; Makris AM; Kampranis SC
    Nat Chem Biol; 2018 Dec; 14(12):1090-1098. PubMed ID: 30429605
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Pathway engineering for the production of heterologous aromatic chemicals and their derivatives in Saccharomyces cerevisiae: bioconversion from glucose.
    Gottardi M; Reifenrath M; Boles E; Tripp J
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582489
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Saccharomyces cerevisiae as a Heterologous Host for Natural Products.
    Otto M; Liu D; Siewers V
    Methods Mol Biol; 2022; 2489():333-367. PubMed ID: 35524059
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Production of natural products through metabolic engineering of Saccharomyces cerevisiae.
    Krivoruchko A; Nielsen J
    Curr Opin Biotechnol; 2015 Dec; 35():7-15. PubMed ID: 25544013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fate of Grape-Derived Terpenoids in Model Systems Containing Active Yeast Cells.
    Slaghenaufi D; Indorato C; Troiano E; Luzzini G; Felis GE; Ugliano M
    J Agric Food Chem; 2020 Nov; 68(47):13294-13301. PubMed ID: 32153191
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of Biosynthetic Pathway and Engineered Biosynthesis of Alkaloids.
    Kishimoto S; Sato M; Tsunematsu Y; Watanabe K
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27548127
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring natural biodiversity to expand access to microbial terpene synthesis.
    Rico J; Duquesne K; Petit JL; Mariage A; Darii E; Peruch F; de Berardinis V; Iacazio G
    Microb Cell Fact; 2019 Feb; 18(1):23. PubMed ID: 30709396
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cellular and molecular engineering of yeast Saccharomyces cerevisiae for advanced biobutanol production.
    Kuroda K; Ueda M
    FEMS Microbiol Lett; 2016 Feb; 363(3):. PubMed ID: 26712533
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Yeast Particles Hyper-Loaded with Terpenes for Biocide Applications.
    Soto ER; Rus F; Ostroff GR
    Molecules; 2022 Jun; 27(11):. PubMed ID: 35684516
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovery and Engineering of Cytochrome P450s for Terpenoid Biosynthesis.
    Xiao H; Zhang Y; Wang M
    Trends Biotechnol; 2019 Jun; 37(6):618-631. PubMed ID: 30528904
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.