BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 34399576)

  • 21. Condensation Heat-Transfer Performance of Thermally Stable Superhydrophobic Cerium-Oxide Surfaces.
    Shim J; Seo D; Oh S; Lee J; Nam Y
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31765-31776. PubMed ID: 30136846
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Durable, Ultrathin, and Antifouling Polymer Brush Coating for Efficient Condensation Heat Transfer.
    Li S; Lam CWE; Donati M; Regulagadda K; Yavuz E; Pfeiffer T; Sarkiris P; Gogolides E; Milionis A; Poulikakos D; Butt HJ; Kappl M
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):1941-1949. PubMed ID: 38115194
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visualization and Experimental Characterization of Wrapping Layer Using Planar Laser-Induced Fluorescence.
    Xu H; Herzog JM; Zhou Y; Bashirzadeh Y; Liu A; Adera S
    ACS Nano; 2024 Feb; 18(5):4068-4076. PubMed ID: 38277478
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Condensation of Satellite Droplets on Lubricant-Cloaked Droplets.
    Ge Q; Raza A; Li H; Sett S; Miljkovic N; Zhang T
    ACS Appl Mater Interfaces; 2020 May; 12(19):22246-22255. PubMed ID: 32306727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dropwise condensation on solid hydrophilic surfaces.
    Cha H; Vahabi H; Wu A; Chavan S; Kim MK; Sett S; Bosch SA; Wang W; Kota AK; Miljkovic N
    Sci Adv; 2020 Jan; 6(2):eaax0746. PubMed ID: 31950076
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic Wettability on the Lubricant-Impregnated Surface: From Nucleation to Growth and Coalescence.
    Guo L; Tang GH; Kumar S
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):26555-26565. PubMed ID: 32419445
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Delayed Lubricant Depletion of Slippery Liquid Infused Porous Surfaces Using Precision Nanostructures.
    Laney SK; Michalska M; Li T; Ramirez FV; Portnoi M; Oh J; Thayne IG; Parkin IP; Tiwari MK; Papakonstantinou I
    Langmuir; 2021 Aug; 37(33):10071-10078. PubMed ID: 34286995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immersion condensation on oil-infused heterogeneous surfaces for enhanced heat transfer.
    Xiao R; Miljkovic N; Enright R; Wang EN
    Sci Rep; 2013; 3():1988. PubMed ID: 23759735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Few-layer graphene on nickel enabled sustainable dropwise condensation.
    Chang W; Peng B; Egab K; Zhang Y; Cheng Y; Li X; Ma X; Li C
    Sci Bull (Beijing); 2021 Sep; 66(18):1877-1884. PubMed ID: 36654397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microscopic droplet formation and energy transport analysis of condensation on scalable superhydrophobic nanostructured copper oxide surfaces.
    Li G; Alhosani MH; Yuan S; Liu H; Ghaferi AA; Zhang T
    Langmuir; 2014 Dec; 30(48):14498-511. PubMed ID: 25419845
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication and durability characterization of superhydrophobic and lubricant-infused surfaces.
    Stoddard R; Nithyanandam K; Pitchumani R
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):662-672. PubMed ID: 34628325
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spontaneous Charging of Drops on Lubricant-Infused Surfaces.
    Li S; Bista P; Weber SAL; Kappl M; Butt HJ
    Langmuir; 2022 Oct; 38(41):12610-12616. PubMed ID: 36190842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lubricant-infused slippery surfaces: Facile fabrication, unique liquid repellence and antireflective properties.
    Li Q; Guo Z
    J Colloid Interface Sci; 2019 Feb; 536():507-515. PubMed ID: 30384056
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B; Mac Giolla Eain M; Xu Q; Egan VM; Punch J; Lyons AM
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23575-88. PubMed ID: 26372672
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lubricant-Infused Surfaces for Low-Surface-Tension Fluids: The Extent of Lubricant Miscibility.
    Sett S; Oh J; Cha H; Veriotti T; Bruno A; Yan X; Barac G; Bolton LW; Miljkovic N
    ACS Appl Mater Interfaces; 2021 May; 13(19):23121-23133. PubMed ID: 33949848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overview of the development of slippery surfaces: Lubricants from presence to absence.
    Wang X; Huang J; Guo Z
    Adv Colloid Interface Sci; 2022 Mar; 301():102602. PubMed ID: 35085985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antiwetting and Antifouling Performances of Different Lubricant-Infused Slippery Surfaces.
    Cao Y; Jana S; Tan X; Bowen L; Zhu Y; Dawson J; Han R; Exton J; Liu H; McHale G; Jakubovics NS; Chen J
    Langmuir; 2020 Nov; 36(45):13396-13407. PubMed ID: 33141589
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion.
    Emelyanenko KA; Emelyanenko AM; Boinovich LB
    J Colloid Interface Sci; 2022 Jul; 618():121-128. PubMed ID: 35334360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced condensation heat transfer using porous silica inverse opal coatings on copper tubes.
    Adera S; Naworski L; Davitt A; Mandsberg NK; Shneidman AV; Alvarenga J; Aizenberg J
    Sci Rep; 2021 May; 11(1):10675. PubMed ID: 34021211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate.
    Macner AM; Daniel S; Steen PH
    Langmuir; 2019 Sep; 35(35):11566-11578. PubMed ID: 31381348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.