These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 34399609)

  • 1. Phage-Resistant Bacteria Reveal a Role for Potassium in Root Colonization.
    Tzipilevich E; Benfey PN
    mBio; 2021 Aug; 12(4):e0140321. PubMed ID: 34399609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.
    Allard-Massicotte R; Tessier L; Lécuyer F; Lakshmanan V; Lucier JF; Garneau D; Caudwell L; Vlamakis H; Bais HP; Beauregard PB
    mBio; 2016 Nov; 7(6):. PubMed ID: 27899502
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic di-AMP Acts as an Extracellular Signal That Impacts
    Townsley L; Yannarell SM; Huynh TN; Woodward JJ; Shank EA
    mBio; 2018 Mar; 9(2):. PubMed ID: 29588402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in
    Pomerleau M; Charron-Lamoureux V; Léonard L; Grenier F; Rodrigue S; Beauregard PB
    mSystems; 2024 Feb; 9(2):e0084323. PubMed ID: 38206029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deletion of Rap-Phr systems in Bacillus subtilis influences in vitro biofilm formation and plant root colonization.
    Nordgaard M; Mortensen RMR; Kirk NK; Gallegos-Monterrosa R; Kovács ÁT
    Microbiologyopen; 2021 Jun; 10(3):e1212. PubMed ID: 34180604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced molecular visualization of root colonization and growth promotion by Bacillus subtilis EA-CB0575 in different growth systems.
    Posada LF; Álvarez JC; Romero-Tabarez M; de-Bashan L; Villegas-Escobar V
    Microbiol Res; 2018 Dec; 217():69-80. PubMed ID: 30384910
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Xu Z; Zhang H; Sun X; Liu Y; Yan W; Xun W; Shen Q; Zhang R
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30552189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacteria elicit a phage tolerance response subsequent to infection of their neighbors.
    Tzipilevich E; Pollak-Fiyaksel O; Shraiteh B; Ben-Yehuda S
    EMBO J; 2022 Feb; 41(3):e109247. PubMed ID: 34878184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mutant bacteriophage evolved to infect resistant bacteria gained a broader host range.
    Habusha M; Tzipilevich E; Fiyaksel O; Ben-Yehuda S
    Mol Microbiol; 2019 Jun; 111(6):1463-1475. PubMed ID: 30811056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Xenogeneic modulation of the ClpCP protease of
    Mulvenna N; Hantke I; Burchell L; Nicod S; Bell D; Turgay K; Wigneshweraraj S
    J Biol Chem; 2019 Nov; 294(46):17501-17511. PubMed ID: 31362989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant growth promoting and antifungal activity in endophytic Bacillus strains from pearl millet (Pennisetum glaucum).
    Kushwaha P; Kashyap PL; Srivastava AK; Tiwari RK
    Braz J Microbiol; 2020 Mar; 51(1):229-241. PubMed ID: 31642002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bacillus subtilis biofilm induction by plant polysaccharides.
    Beauregard PB; Chai Y; Vlamakis H; Losick R; Kolter R
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):E1621-30. PubMed ID: 23569226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BacteRiophage EXclusion (BREX): A novel anti-phage mechanism in the arsenal of bacterial defense system.
    Chaudhary K
    J Cell Physiol; 2018 Feb; 233(2):771-773. PubMed ID: 28444888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversification of Bacillus subtilis during experimental evolution on Arabidopsis thaliana and the complementarity in root colonization of evolved subpopulations.
    Blake C; Nordgaard M; Maróti G; Kovács ÁT
    Environ Microbiol; 2021 Oct; 23(10):6122-6136. PubMed ID: 34296794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diverse Bacterial Genes Modulate Plant Root Association by Beneficial Bacteria.
    do Amaral FP; Tuleski TR; Pankievicz VCS; Melnyk RA; Arkin AP; Griffitts J; Tadra-Sfeir MZ; Maltempi de Souza E; Deutschbauer A; Monteiro RA; Stacey G
    mBio; 2020 Dec; 11(6):. PubMed ID: 33323518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of rhizodeposits in shaping rhizomicrobiome.
    Tian T; Reverdy A; She Q; Sun B; Chai Y
    Environ Microbiol Rep; 2020 Apr; 12(2):160-172. PubMed ID: 31858707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple method to isolate biofilm-forming Bacillus subtilis and related species from plant roots.
    Fall R; Kinsinger RF; Wheeler KA
    Syst Appl Microbiol; 2004 May; 27(3):372-9. PubMed ID: 15214643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Plant Host Induces Antibiotic Production To Select the Most-Beneficial Colonizers.
    Ogran A; Yardeni EH; Keren-Paz A; Bucher T; Jain R; Gilhar O; Kolodkin-Gal I
    Appl Environ Microbiol; 2019 Jul; 85(13):. PubMed ID: 31003984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From Sea to Soil: Marine Bacillus subtilis enhancing chickpea production through in vitro and in vivo plant growth promoting traits.
    Rathod K; Rana S; Dhandhukia P; Thakker JN
    Braz J Microbiol; 2024 Mar; 55(1):823-836. PubMed ID: 38191971
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Zhang P; Wang Z; Zhao S; Wang Y; Matthews S; Liu B
    Biomol NMR Assign; 2019 Apr; 13(1):245-247. PubMed ID: 30830594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.