These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 34399797)
1. Chromatin interaction neural network (ChINN): a machine learning-based method for predicting chromatin interactions from DNA sequences. Cao F; Zhang Y; Cai Y; Animesh S; Zhang Y; Akincilar SC; Loh YP; Li X; Chng WJ; Tergaonkar V; Kwoh CK; Fullwood MJ Genome Biol; 2021 Aug; 22(1):226. PubMed ID: 34399797 [TBL] [Abstract][Full Text] [Related]
2. DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks. Liu T; Wang Z PLoS Comput Biol; 2023 Jul; 19(7):e1011307. PubMed ID: 37440599 [TBL] [Abstract][Full Text] [Related]
3. Predicting Chromatin Interactions from DNA Sequence Using DeepC. Schwessinger R Methods Mol Biol; 2023; 2624():19-42. PubMed ID: 36723807 [TBL] [Abstract][Full Text] [Related]
4. Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells. Al Bkhetan Z; Kadlof M; Kraft A; Plewczynski D Methods; 2019 Aug; 166():83-90. PubMed ID: 30853548 [TBL] [Abstract][Full Text] [Related]
5. Be-1DCNN: a neural network model for chromatin loop prediction based on bagging ensemble learning. Wu H; Zhou B; Zhou H; Zhang P; Wang M Brief Funct Genomics; 2023 Nov; 22(5):475-484. PubMed ID: 37133976 [TBL] [Abstract][Full Text] [Related]
6. Predicting CTCF-mediated chromatin interactions by integrating genomic and epigenomic features. Kai Y; Andricovich J; Zeng Z; Zhu J; Tzatsos A; Peng W Nat Commun; 2018 Oct; 9(1):4221. PubMed ID: 30310060 [TBL] [Abstract][Full Text] [Related]
7. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization. Nikumbh S; Pfeifer N BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341 [TBL] [Abstract][Full Text] [Related]
8. A supervised learning framework for chromatin loop detection in genome-wide contact maps. Salameh TJ; Wang X; Song F; Zhang B; Wright SM; Khunsriraksakul C; Ruan Y; Yue F Nat Commun; 2020 Jul; 11(1):3428. PubMed ID: 32647330 [TBL] [Abstract][Full Text] [Related]
9. An integrative approach for fine-mapping chromatin interactions. Jaroszewicz A; Ernst J Bioinformatics; 2020 Mar; 36(6):1704-1711. PubMed ID: 31742318 [TBL] [Abstract][Full Text] [Related]
10. Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Tao H; Li H; Xu K; Hong H; Jiang S; Du G; Wang J; Sun Y; Huang X; Ding Y; Li F; Zheng X; Chen H; Bo X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454752 [TBL] [Abstract][Full Text] [Related]
11. In silico prediction of high-resolution Hi-C interaction matrices. Zhang S; Chasman D; Knaack S; Roy S Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132 [TBL] [Abstract][Full Text] [Related]
12. Graph embedding and unsupervised learning predict genomic sub-compartments from HiC chromatin interaction data. Ashoor H; Chen X; Rosikiewicz W; Wang J; Cheng A; Wang P; Ruan Y; Li S Nat Commun; 2020 Mar; 11(1):1173. PubMed ID: 32127534 [TBL] [Abstract][Full Text] [Related]
13. Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity. Pancaldi V; Carrillo-de-Santa-Pau E; Javierre BM; Juan D; Fraser P; Spivakov M; Valencia A; Rico D Genome Biol; 2016 Jul; 17(1):152. PubMed ID: 27391817 [TBL] [Abstract][Full Text] [Related]
14. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. Ibn-Salem J; Andrade-Navarro MA BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198 [TBL] [Abstract][Full Text] [Related]
15. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation. Kuang S; Wang L J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622 [No Abstract] [Full Text] [Related]
16. HiCDiffusion - diffusion-enhanced, transformer-based prediction of chromatin interactions from DNA sequences. Chiliński M; Plewczynski D BMC Genomics; 2024 Oct; 25(1):964. PubMed ID: 39407104 [TBL] [Abstract][Full Text] [Related]
17. A survey on protein-DNA-binding sites in computational biology. Zhang Y; Bao W; Cao Y; Cong H; Chen B; Chen Y Brief Funct Genomics; 2022 Sep; 21(5):357-375. PubMed ID: 35652477 [TBL] [Abstract][Full Text] [Related]
18. Chromatin accessibility maps of chronic lymphocytic leukaemia identify subtype-specific epigenome signatures and transcription regulatory networks. Rendeiro AF; Schmidl C; Strefford JC; Walewska R; Davis Z; Farlik M; Oscier D; Bock C Nat Commun; 2016 Jun; 7():11938. PubMed ID: 27346425 [TBL] [Abstract][Full Text] [Related]
19. Explainable machine learning for chronic lymphocytic leukemia treatment prediction using only inexpensive tests. Meiseles A; Paley D; Ziv M; Hadid Y; Rokach L; Tadmor T Comput Biol Med; 2022 Jun; 145():105490. PubMed ID: 35405402 [TBL] [Abstract][Full Text] [Related]
20. Machine Learning Methods for Exploring Sequence Determinants of 3D Genome Organization. Yang M; Ma J J Mol Biol; 2022 Aug; 434(15):167666. PubMed ID: 35659533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]