These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34400211)

  • 1. Time-series analysis of trial-to-trial variability of MEG power spectrum during rest state, unattended listening, and frequency-modulated tones classification.
    Kipiński L; Kordecki W
    J Neurosci Methods; 2021 Nov; 363():109318. PubMed ID: 34400211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of modern tests for stationarity to single-trial MEG data: transferring powerful statistical tools from econometrics to neuroscience.
    Kipiński L; König R; Sielużycki C; Kordecki W
    Biol Cybern; 2011 Oct; 105(3-4):183-95. PubMed ID: 22095173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.
    Bénar CG; Grova C; Jirsa VK; Lina JM
    J Comput Neurosci; 2019 Aug; 47(1):31-41. PubMed ID: 31292816
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEG-measured auditory steady-state oscillations show high test-retest reliability: A sensor and source-space analysis.
    Tan HR; Gross J; Uhlhaas PJ
    Neuroimage; 2015 Nov; 122():417-26. PubMed ID: 26216274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoencephalography in healthy neonates.
    Haddad N; Shihabuddin B; Preissl H; Holst M; Lowery CL; Eswaran H
    Clin Neurophysiol; 2006 Feb; 117(2):289-94. PubMed ID: 16414000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity of EEG and MEG to the N1 and P2 auditory evoked responses modulated by spectral complexity of sounds.
    Shahin AJ; Roberts LE; Miller LM; McDonald KL; Alain C
    Brain Topogr; 2007; 20(2):55-61. PubMed ID: 17899352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated model selection in covariance estimation and spatial whitening of MEG and EEG signals.
    Engemann DA; Gramfort A
    Neuroimage; 2015 Mar; 108():328-42. PubMed ID: 25541187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Describing the nonstationarity level of neurological signals based on quantifications of time-frequency representation.
    Tong S; Li Z; Zhu Y; Thakor NV
    IEEE Trans Biomed Eng; 2007 Oct; 54(10):1780-5. PubMed ID: 17926676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG.
    Siems M; Pape AA; Hipp JF; Siegel M
    Neuroimage; 2016 Apr; 129():345-355. PubMed ID: 26827813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A mathematical approach to the temporal stationarity of background noise in MEG/EEG measurements.
    Bijma F; de Munck JC; Huizenga HM; Heethaar RM
    Neuroimage; 2003 Sep; 20(1):233-43. PubMed ID: 14527584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A three domain covariance framework for EEG/MEG data.
    Roś BP; Bijma F; de Gunst MC; de Munck JC
    Neuroimage; 2015 Oct; 119():305-15. PubMed ID: 26072253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying auditory cortex encoding abnormalities in schizophrenia: The utility of low-frequency versus 40 Hz steady-state measures.
    Edgar JC; Fisk CL; Chen YH; Stone-Howell B; Liu S; Hunter MA; Huang M; Bustillo J; Cañive JM; Miller GA
    Psychophysiology; 2018 Aug; 55(8):e13074. PubMed ID: 29570815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A multivariate method for estimating cross-frequency neuronal interactions and correcting linear mixing in MEG data, using canonical correlations.
    Soto JL; Lachaux JP; Baillet S; Jerbi K
    J Neurosci Methods; 2016 Sep; 271():169-81. PubMed ID: 27468679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering of early cortical responses to median nerve stimulation from average and single trial MEG and EEG signals.
    Zainea OF; Kostopoulos GK; Ioannides AA
    Brain Topogr; 2005; 17(4):219-36. PubMed ID: 16110772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nonstationarity test for the spectral analysis of physiological time series with an application to respiratory sinus arrhythmia.
    Weber EJ; Molenaar PC; van der Molen MW
    Psychophysiology; 1992 Jan; 29(1):55-65. PubMed ID: 1609027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting millisecond-range coupling delays between brainwaves in terms of power correlations by magnetoencephalography.
    Dabek J; Nikulin VV; Ilmoniemi RJ
    J Neurosci Methods; 2014 Sep; 235():10-24. PubMed ID: 24983131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultra-low-noise EEG/MEG systems enable bimodal non-invasive detection of spike-like human somatosensory evoked responses at 1 kHz.
    Fedele T; Scheer HJ; Burghoff M; Curio G; Körber R
    Physiol Meas; 2015 Feb; 36(2):357-68. PubMed ID: 25612926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictive regression modeling with MEG/EEG: from source power to signals and cognitive states.
    Sabbagh D; Ablin P; Varoquaux G; Gramfort A; Engemann DA
    Neuroimage; 2020 Nov; 222():116893. PubMed ID: 32439535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual organization of auditory streaming-task relies on neural entrainment of the stimulus-presentation rate: MEG evidence.
    Chakalov I; Draganova R; Wollbrink A; Preissl H; Pantev C
    BMC Neurosci; 2013 Oct; 14():120. PubMed ID: 24119225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microstates and power envelope hidden Markov modeling probe bursting brain activity at different timescales.
    Coquelet N; De Tiège X; Roshchupkina L; Peigneux P; Goldman S; Woolrich M; Wens V
    Neuroimage; 2022 Feb; 247():118850. PubMed ID: 34954027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.