BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 34400216)

  • 1. AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle.
    Miller SG; Hafen PS; Law AS; Springer CB; Logsdon DL; O'Connell TM; Witczak CA; Brault JJ
    Metabolism; 2021 Oct; 123():154864. PubMed ID: 34400216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increased AMP deaminase activity decreases ATP content and slows protein degradation in cultured skeletal muscle.
    Davis PR; Miller SG; Verhoeven NA; Morgan JS; Tulis DA; Witczak CA; Brault JJ
    Metabolism; 2020 Jul; 108():154257. PubMed ID: 32370945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AMP deamination delays muscle acidification during heavy exercise and hypoxia.
    Korzeniewski B
    J Biol Chem; 2006 Feb; 281(6):3057-66. PubMed ID: 16314416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [AMPD genes and urate metabolism].
    Morisaki H; Morisaki T
    Nihon Rinsho; 2008 Apr; 66(4):771-7. PubMed ID: 18409530
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of pharmacological AMP deaminase inhibition and Ampd1 deletion on nucleotide levels and AMPK activation in contracting skeletal muscle.
    Plaideau C; Lai YC; Kviklyte S; Zanou N; Löfgren L; Andersén H; Vertommen D; Gailly P; Hue L; Bohlooly-Y M; Hallén S; Rider MH
    Chem Biol; 2014 Nov; 21(11):1497-1510. PubMed ID: 25459662
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protecting the cellular energy state during contractions: role of AMP deaminase.
    Hancock CR; Brault JJ; Terjung RL
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine nucleotide depletion in human muscle during exercise: causality and significance of AMP deamination.
    Sahlin K; Broberg S
    Int J Sports Med; 1990 May; 11 Suppl 2():S62-7. PubMed ID: 2361781
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AICAR stimulates mitochondrial biogenesis and BCAA catabolic enzyme expression in C2C12 myotubes.
    Hinkle JS; Rivera CN; Vaughan RA
    Biochimie; 2022 Apr; 195():77-85. PubMed ID: 34798200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of ATP turnover and metabolite changes on IMP formation and glycolysis in rat skeletal muscle.
    Sahlin K; Gorski J; Edström L
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C409-12. PubMed ID: 2399963
    [TBL] [Abstract][Full Text] [Related]  

  • 11. alpha-Lipoic acid increases energy expenditure by enhancing adenosine monophosphate-activated protein kinase-peroxisome proliferator-activated receptor-gamma coactivator-1alpha signaling in the skeletal muscle of aged mice.
    Wang Y; Li X; Guo Y; Chan L; Guan X
    Metabolism; 2010 Jul; 59(7):967-76. PubMed ID: 20015518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of adenine nucleotide catabolism in primary rat muscle cultures.
    Zoref-Shani E; Shainberg A; Sperling O
    Biochim Biophys Acta; 1987 Dec; 926(3):287-95. PubMed ID: 2825800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AMPD3-deficient mice exhibit increased erythrocyte ATP levels but anemia not improved due to PK deficiency.
    Cheng J; Morisaki H; Toyama K; Ikawa M; Okabe M; Morisaki T
    Genes Cells; 2012 Nov; 17(11):913-22. PubMed ID: 23078545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights on the regulation of the adenine nucleotide pool of erythrocytes in mouse models.
    O'Brien WG; Ling HS; Zhao Z; Lee CC
    PLoS One; 2017; 12(7):e0180948. PubMed ID: 28746349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Skeletal muscle contraction kinetics and AMPK responses are modulated by the adenine nucleotide degrading enzyme AMPD1.
    Hafen PS; Law AS; Matias C; Miller SG; Brault JJ
    J Appl Physiol (1985); 2022 Nov; 133(5):1055-1066. PubMed ID: 36107988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of genetic deletion of soluble 5'-nucleotidases NT5C1A and NT5C2 on AMPK activation and nucleotide levels in contracting mouse skeletal muscles.
    Kviklyte S; Vertommen D; Yerna X; Andersén H; Xu X; Gailly P; Bohlooly-Y M; Oscarsson J; Rider MH
    Am J Physiol Endocrinol Metab; 2017 Jul; 313(1):E48-E62. PubMed ID: 28325731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle.
    Jørgensen SB; Wojtaszewski JF; Viollet B; Andreelli F; Birk JB; Hellsten Y; Schjerling P; Vaulont S; Neufer PD; Richter EA; Pilegaard H
    FASEB J; 2005 Jul; 19(9):1146-8. PubMed ID: 15878932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Roles of adenosine monophosphate activated protein kinase in skeletal muscle atrophy in rats with severe scald].
    Deng HP; Cai JH; Chai JK; Shen ZA; Li LG; Sun TJ; Chen JJ; Li DJ; Dong N; Liu LY
    Zhonghua Shao Shang Za Zhi; 2021 Jul; 37(7):640-646. PubMed ID: 34304404
    [No Abstract]   [Full Text] [Related]  

  • 19. Ca2+/calmodulin-dependent protein kinase kinase is involved in AMP-activated protein kinase activation by alpha-lipoic acid in C2C12 myotubes.
    Shen QW; Zhu MJ; Tong J; Ren J; Du M
    Am J Physiol Cell Physiol; 2007 Oct; 293(4):C1395-403. PubMed ID: 17687000
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myoadenylate deaminase deficiency. Functional and metabolic abnormalities associated with disruption of the purine nucleotide cycle.
    Sabina RL; Swain JL; Olanow CW; Bradley WG; Fishbein WN; DiMauro S; Holmes EW
    J Clin Invest; 1984 Mar; 73(3):720-30. PubMed ID: 6707201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.