BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34400592)

  • 1. Residual voltage as an ad-hoc indicator of electrode damage in biphasic electrical stimulation.
    Krishnan A; Forssell M; Du Z; Cui XT; Fedder GK; Kelly SK
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34400592
    [No Abstract]   [Full Text] [Related]  

  • 2. Neural electrode degradation from continuous electrical stimulation: comparison of sputtered and activated iridium oxide.
    Negi S; Bhandari R; Rieth L; Van Wagenen R; Solzbacher F
    J Neurosci Methods; 2010 Jan; 186(1):8-17. PubMed ID: 19878693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On Using Residual Voltage to Estimate Electrode Model Parameters for Damage Detection.
    Krishnan A; Kelly SK
    IEEE Biomed Circuits Syst Conf; 2015 Oct; 2015():. PubMed ID: 27231725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iridium oxide microelectrode arrays for in vitro stimulation of individual rat neurons from dissociated cultures.
    Eick S; Wallys J; Hofmann B; van Ooyen A; Schnakenberg U; Ingebrandt S; Offenhäusser A
    Front Neuroeng; 2009; 2():16. PubMed ID: 19949459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chronic neural stimulation with thin-film, iridium oxide electrodes.
    Weiland JD; Anderson DJ
    IEEE Trans Biomed Eng; 2000 Jul; 47(7):911-8. PubMed ID: 10916262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic electrical stimulation of the auditory nerve at high stimulus rates: a physiological and histopathological study.
    Xu J; Shepherd RK; Millard RE; Clark GM
    Hear Res; 1997 Mar; 105(1-2):1-29. PubMed ID: 9083801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical performance of penetrating microelectrodes chronically implanted in cat cortex.
    Kane SR; Cogan SF; Ehrlich J; Plante TD; McCreery DB
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5416-9. PubMed ID: 22255562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of oxygen reduction reactions at neurostimulation electrodes.
    Ehlich J; Migliaccio L; Sahalianov I; Nikić M; Brodský J; Gablech I; Vu XT; Ingebrandt S; Głowacki ED
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688124
    [No Abstract]   [Full Text] [Related]  

  • 9. Electrochemical characteristics of ultramicro-dimensioned SIROF electrodes for neural stimulation and recording.
    Ghazavi A; Maeng J; Black M; Salvi S; Cogan SF
    J Neural Eng; 2020 Jan; 17(1):016022. PubMed ID: 31665712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimensional scaling of thin-film stimulation electrode systems in translational research.
    Schiavone G; Vachicouras N; Vyza Y; Lacour SP
    J Neural Eng; 2021 May; 18(4):. PubMed ID: 33831857
    [No Abstract]   [Full Text] [Related]  

  • 11. The effect of electrode geometry on electrochemical properties measured in saline.
    Cogan SF; Ehrlich J; Plante TD
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6850-3. PubMed ID: 25571570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays.
    Negi S; Bhandari R; Rieth L; Solzbacher F
    Biomed Mater; 2010 Feb; 5(1):15007. PubMed ID: 20124668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates.
    O'Sullivan KP; Orazem ME; Otto KJ; Butson CR; Baker JL
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38862007
    [No Abstract]   [Full Text] [Related]  

  • 14. Contribution of oxygen reduction to charge injection on platinum and sputtered iridium oxide neural stimulation electrodes.
    Cogan SF; Ehrlich J; Plante TD; Gingerich MD; Shire DB
    IEEE Trans Biomed Eng; 2010 Sep; 57(9):2313-21. PubMed ID: 20515708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetrating microelectrode arrays with low-impedance sputtered iridium oxide electrode coatings.
    Cogan SF; Ehrlich J; Plante TD; Van Wagenen R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():7147-50. PubMed ID: 19965266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedance characteristics of deep brain stimulation electrodes in vitro and in vivo.
    Wei XF; Grill WM
    J Neural Eng; 2009 Aug; 6(4):046008. PubMed ID: 19587394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding charge transfer on the clinically used conical Utah electrode array: charge storage capacity, electrochemical impedance spectroscopy and effective electrode area.
    Harris AR
    J Neural Eng; 2021 Feb; 18(2):. PubMed ID: 33401255
    [No Abstract]   [Full Text] [Related]  

  • 18. Integration of High-Charge-Injection-Capacity Electrodes onto Polymer Softening Neural Interfaces.
    Arreaga-Salas DE; Avendaño-Bolívar A; Simon D; Reit R; Garcia-Sandoval A; Rennaker RL; Voit W
    ACS Appl Mater Interfaces; 2015 Dec; 7(48):26614-23. PubMed ID: 26575084
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-charge-capacity sputtered iridium oxide neural stimulation electrodes deposited using water vapor as a reactive plasma constituent.
    Maeng J; Chakraborty B; Geramifard N; Kang T; Rihani RT; Joshi-Imre A; Cogan SF
    J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):880-891. PubMed ID: 31353822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording.
    Venkatraman S; Hendricks J; King ZA; Sereno AJ; Richardson-Burns S; Martin D; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):307-16. PubMed ID: 21292598
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.