These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 34400666)

  • 1. Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images.
    Sadhwani A; Chang HW; Behrooz A; Brown T; Auvigne-Flament I; Patel H; Findlater R; Velez V; Tan F; Tekiela K; Wulczyn E; Yi ES; Mermel CH; Hanks D; Chen PC; Kulig K; Batenchuk C; Steiner DF; Cimermancic P
    Sci Rep; 2021 Aug; 11(1):16605. PubMed ID: 34400666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Epidermal Growth Factor Receptor Mutation Subtypes in Non-Small Cell Lung Cancer From Hematoxylin and Eosin-Stained Slides Using Deep Learning.
    Zhang W; Wang W; Xu Y; Wu K; Shi J; Li M; Feng Z; Liu Y; Zheng Y; Wu H
    Lab Invest; 2024 Aug; 104(8):102094. PubMed ID: 38871058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating Imaging, Histologic, and Genetic Features to Predict Tumor Mutation Burden of Non-Small-Cell Lung Cancer.
    Zhang N; Wu J; Yu J; Zhu H; Yang M; Li R
    Clin Lung Cancer; 2020 May; 21(3):e151-e163. PubMed ID: 31734072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-based tumor microenvironment segmentation is predictive of tumor mutations and patient survival in non-small-cell lung cancer.
    Rączkowska A; Paśnik I; Kukiełka M; Nicoś M; Budzinska MA; Kucharczyk T; Szumiło J; Krawczyk P; Crosetto N; Szczurek E
    BMC Cancer; 2022 Sep; 22(1):1001. PubMed ID: 36131239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of subtypes including LCNEC in lung cancer biopsy slides using convolutional neural network from scratch.
    Yang JW; Song DH; An HJ; Seo SB
    Sci Rep; 2022 Feb; 12(1):1830. PubMed ID: 35115593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lung Cancer Diagnosis on Virtual Histologically Stained Tissue Using Weakly Supervised Learning.
    Chen Z; Wong IHM; Dai W; Lo CTK; Wong TTW
    Mod Pathol; 2024 Jun; 37(6):100487. PubMed ID: 38588884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classifying non-small cell lung cancer types and transcriptomic subtypes using convolutional neural networks.
    Yu KH; Wang F; Berry GJ; Ré C; Altman RB; Snyder M; Kohane IS
    J Am Med Inform Assoc; 2020 May; 27(5):757-769. PubMed ID: 32364237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Learning for Predicting Effect of Neoadjuvant Therapies in Non-Small Cell Lung Carcinomas With Histologic Images.
    Terada K; Yoshizawa A; Liu X; Ito H; Hamaji M; Menju T; Date H; Bise R; Haga H
    Mod Pathol; 2023 Nov; 36(11):100302. PubMed ID: 37580019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High tumor mutation burden predicts favorable outcome among patients with aggressive histological subtypes of lung adenocarcinoma: A population-based single-institution study.
    Talvitie EM; Vilhonen H; Kurki S; Karlsson A; Orte K; Almangush A; Mohamed H; Liljeroos L; Singh Y; Leivo I; Laitinen T; Kallajoki M; Taimen P
    Neoplasia; 2020 Sep; 22(9):333-342. PubMed ID: 32585428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpretable deep learning model to predict the molecular classification of endometrial cancer from haematoxylin and eosin-stained whole-slide images: a combined analysis of the PORTEC randomised trials and clinical cohorts.
    Fremond S; Andani S; Barkey Wolf J; Dijkstra J; Melsbach S; Jobsen JJ; Brinkhuis M; Roothaan S; Jurgenliemk-Schulz I; Lutgens LCHW; Nout RA; van der Steen-Banasik EM; de Boer SM; Powell ME; Singh N; Mileshkin LR; Mackay HJ; Leary A; Nijman HW; Smit VTHBM; Creutzberg CL; Horeweg N; Koelzer VH; Bosse T
    Lancet Digit Health; 2023 Feb; 5(2):e71-e82. PubMed ID: 36496303
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma.
    Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D
    Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Deep Learning to Develop and Analyze Computational Hematoxylin and Eosin Staining of Prostate Core Biopsy Images for Tumor Diagnosis.
    Rana A; Lowe A; Lithgow M; Horback K; Janovitz T; Da Silva A; Tsai H; Shanmugam V; Bayat A; Shah P
    JAMA Netw Open; 2020 May; 3(5):e205111. PubMed ID: 32432709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of artificial intelligence with deep learning of hematoxylin and eosin-stained whole slide images to predict lymph node metastasis in T1 colorectal cancer using endoscopically resected specimens; prediction of lymph node metastasis in T1 colorectal cancer.
    Song JH; Hong Y; Kim ER; Kim SH; Sohn I
    J Gastroenterol; 2022 Sep; 57(9):654-666. PubMed ID: 35802259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prognostic significance of tumor-infiltrating lymphocytes assessment with hematoxylin and eosin sections in resected primary lung adenocarcinoma.
    Kim A; Lee SJ; Ahn J; Park WY; Shin DH; Lee CH; Kwon H; Jeong YJ; Ahn HY; I H; Kim YD; Cho JS
    PLoS One; 2019; 14(11):e0224430. PubMed ID: 31743333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole slide image-based weakly supervised deep learning for predicting major pathological response in non-small cell lung cancer following neoadjuvant chemoimmunotherapy: a multicenter, retrospective, cohort study.
    Han D; Li H; Zheng X; Fu S; Wei R; Zhao Q; Liu C; Wang Z; Huang W; Hao S
    Front Immunol; 2024; 15():1453232. PubMed ID: 39372403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of tumor-infiltrating lymphocytes using routine H&E slides predicts patient survival in resected non-small cell lung cancer.
    Rakaee M; Kilvaer TK; Dalen SM; Richardsen E; Paulsen EE; Hald SM; Al-Saad S; Andersen S; Donnem T; Bremnes RM; Busund LT
    Hum Pathol; 2018 Sep; 79():188-198. PubMed ID: 29885403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images.
    Park JH; Lim JH; Kim S; Kim CH; Choi JS; Lim JH; Kim L; Chang JW; Park D; Lee MW; Kim S; Park IS; Han SH; Shin E; Roh J; Heo J
    J Pathol Clin Res; 2024 Nov; 10(6):e70004. PubMed ID: 39358807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Multi-classification prediction model of lung cancer tumor mutation burden based on residual network].
    Meng X; Yu C; Yang X; Yang Z; Liu D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Oct; 40(5):867-875. PubMed ID: 37879915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of MET Overexpression in Lung Adenocarcinoma from Hematoxylin and Eosin Images.
    Ingale K; Hong SH; Bell JSK; Rizvi A; Welch A; Sha L; Ho I; Nagpal K; Bentaieb A; Joshi RP; Stumpe MC
    Am J Pathol; 2024 Jun; 194(6):1020-1032. PubMed ID: 38493926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quantitative imaging biomarker for predicting disease-free-survival-associated histologic subgroups in lung adenocarcinoma.
    Lu L; Wang D; Wang L; E L; Guo P; Li Z; Xiang J; Yang H; Li H; Yin S; Schwartz LH; Xie C; Zhao B
    Eur Radiol; 2020 Jul; 30(7):3614-3623. PubMed ID: 32086583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.