These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 34400666)
21. LUADpp: an effective prediction model on prognosis of lung adenocarcinomas based on somatic mutational features. Yu J; Hu Y; Xu Y; Wang J; Kuang J; Zhang W; Shao J; Guo D; Wang Y BMC Cancer; 2019 Mar; 19(1):263. PubMed ID: 30902072 [TBL] [Abstract][Full Text] [Related]
22. A deep learning model for the classification of indeterminate lung carcinoma in biopsy whole slide images. Kanavati F; Toyokawa G; Momosaki S; Takeoka H; Okamoto M; Yamazaki K; Takeo S; Iizuka O; Tsuneki M Sci Rep; 2021 Apr; 11(1):8110. PubMed ID: 33854137 [TBL] [Abstract][Full Text] [Related]
23. Tailoring pretext tasks to improve self-supervised learning in histopathologic subtype classification of lung adenocarcinomas. Ding R; Yadav A; Rodriguez E; Araujo Lemos da Silva AC; Hsu W Comput Biol Med; 2023 Nov; 166():107484. PubMed ID: 37741228 [TBL] [Abstract][Full Text] [Related]
24. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on Koyasu S; Nishio M; Isoda H; Nakamoto Y; Togashi K Ann Nucl Med; 2020 Jan; 34(1):49-57. PubMed ID: 31659591 [TBL] [Abstract][Full Text] [Related]
25. Deep-Learning to Predict BRCA Mutation and Survival from Digital H&E Slides of Epithelial Ovarian Cancer. Nero C; Boldrini L; Lenkowicz J; Giudice MT; Piermattei A; Inzani F; Pasciuto T; Minucci A; Fagotti A; Zannoni G; Valentini V; Scambia G Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232628 [TBL] [Abstract][Full Text] [Related]
26. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Coudray N; Ocampo PS; Sakellaropoulos T; Narula N; Snuderl M; Fenyö D; Moreira AL; Razavian N; Tsirigos A Nat Med; 2018 Oct; 24(10):1559-1567. PubMed ID: 30224757 [TBL] [Abstract][Full Text] [Related]
27. Deep learning model for the prediction of microsatellite instability in colorectal cancer: a diagnostic study. Yamashita R; Long J; Longacre T; Peng L; Berry G; Martin B; Higgins J; Rubin DL; Shen J Lancet Oncol; 2021 Jan; 22(1):132-141. PubMed ID: 33387492 [TBL] [Abstract][Full Text] [Related]
28. Predicting response to immunotherapy in advanced non-small-cell lung cancer using tumor mutational burden radiomic biomarker. He B; Dong D; She Y; Zhou C; Fang M; Zhu Y; Zhang H; Huang Z; Jiang T; Tian J; Chen C J Immunother Cancer; 2020 Jul; 8(2):. PubMed ID: 32636239 [TBL] [Abstract][Full Text] [Related]
29. Association of Survival and Immune-Related Biomarkers With Immunotherapy in Patients With Non-Small Cell Lung Cancer: A Meta-analysis and Individual Patient-Level Analysis. Yu Y; Zeng D; Ou Q; Liu S; Li A; Chen Y; Lin D; Gao Q; Zhou H; Liao W; Yao H JAMA Netw Open; 2019 Jul; 2(7):e196879. PubMed ID: 31290993 [TBL] [Abstract][Full Text] [Related]
30. Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks. Wei JW; Tafe LJ; Linnik YA; Vaickus LJ; Tomita N; Hassanpour S Sci Rep; 2019 Mar; 9(1):3358. PubMed ID: 30833650 [TBL] [Abstract][Full Text] [Related]
32. High accuracy epidermal growth factor receptor mutation prediction via histopathological deep learning. Zhao D; Zhao Y; He S; Liu Z; Li K; Zhang L; Zhang X; Wang S; Che N; Jin M BMC Pulm Med; 2023 Jul; 23(1):244. PubMed ID: 37407963 [TBL] [Abstract][Full Text] [Related]
33. Assessment of tumour viability in human lung cancer xenografts with texture-based image analysis. Turkki R; Linder N; Holopainen T; Wang Y; Grote A; Lundin M; Alitalo K; Lundin J J Clin Pathol; 2015 Aug; 68(8):614-21. PubMed ID: 26021331 [TBL] [Abstract][Full Text] [Related]
34. Radiomic signature as a diagnostic factor for histologic subtype classification of non-small cell lung cancer. Zhu X; Dong D; Chen Z; Fang M; Zhang L; Song J; Yu D; Zang Y; Liu Z; Shi J; Tian J Eur Radiol; 2018 Jul; 28(7):2772-2778. PubMed ID: 29450713 [TBL] [Abstract][Full Text] [Related]
35. Predicting gastric cancer tumor mutational burden from histopathological images using multimodal deep learning. Li J; Liu H; Liu W; Zong P; Huang K; Li Z; Li H; Xiong T; Tian G; Li C; Yang J Brief Funct Genomics; 2024 May; 23(3):228-238. PubMed ID: 37525540 [TBL] [Abstract][Full Text] [Related]
36. Integrative Modeling of Multiomics Data for Predicting Tumor Mutation Burden in Patients with Lung Cancer. Wang J; Chen P; Su M; Zhong G; Zhang S; Gou D Biomed Res Int; 2022; 2022():2698190. PubMed ID: 35097114 [TBL] [Abstract][Full Text] [Related]
37. Exploring the survival prognosis of lung adenocarcinoma based on the cancer genome atlas database using artificial neural network. Jiang N; Xu X Medicine (Baltimore); 2019 May; 98(20):e15642. PubMed ID: 31096483 [TBL] [Abstract][Full Text] [Related]
38. Computed Tomography-Based Radiomics Signature: A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule. Yang X; Dong X; Wang J; Li W; Gu Z; Gao D; Zhong N; Guan Y Oncologist; 2019 Nov; 24(11):e1156-e1164. PubMed ID: 30936378 [TBL] [Abstract][Full Text] [Related]
39. Predicting Tumor Mutational Burden From Lung Adenocarcinoma Histopathological Images Using Deep Learning. Niu Y; Wang L; Zhang X; Han Y; Yang C; Bai H; Huang K; Ren C; Tian G; Yin S; Zhao Y; Wang Y; Shi X; Zhang M Front Oncol; 2022; 12():927426. PubMed ID: 35756617 [TBL] [Abstract][Full Text] [Related]
40. Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides. Jørgensen AS; Rasmussen AM; Andersen NKM; Andersen SK; Emborg J; Røge R; Østergaard LR Cytometry A; 2017 Aug; 91(8):785-793. PubMed ID: 28727286 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]