These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34401506)

  • 21. Comparison of speech perception performance between Sprint/Esprit 3G and Freedom processors in children implanted with nucleus cochlear implants.
    Santarelli R; Magnavita V; De Filippi R; Ventura L; Genovese E; Arslan E
    Otol Neurotol; 2009 Apr; 30(3):304-12. PubMed ID: 19225440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of presentation level and stimulation rate on speech perception and modulation detection for cochlear implant users.
    Brochier T; McDermott HJ; McKay CM
    J Acoust Soc Am; 2017 Jun; 141(6):4097. PubMed ID: 28618807
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amplitude mapping and phoneme recognition in cochlear implant listeners.
    Zeng FG; Galvin JJ
    Ear Hear; 1999 Feb; 20(1):60-74. PubMed ID: 10037066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of directionality performances: comparison between Freedom and CP810 sound processors.
    Razza S; Albanese G; Ermoli L; Zaccone M; Cristofari E
    Otolaryngol Head Neck Surg; 2013 Oct; 149(4):608-13. PubMed ID: 23838307
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimization of programming parameters in children with the advanced bionics cochlear implant.
    Baudhuin J; Cadieux J; Firszt JB; Reeder RM; Maxson JL
    J Am Acad Audiol; 2012 May; 23(5):302-12. PubMed ID: 22533974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of front-end processing on cochlear implant performance of children.
    Wolfe J; Schafer EC; John A; Hudson M
    Otol Neurotol; 2011 Jun; 32(4):533-8. PubMed ID: 21436756
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of presentation level on phoneme and sentence recognition in quiet by cochlear implant listeners.
    Donaldson GS; Allen SL
    Ear Hear; 2003 Oct; 24(5):392-405. PubMed ID: 14534410
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hearing performance in single-sided deaf cochlear implant users after upgrade to a single-unit speech processor.
    Mertens G; Hofkens A; Punte AK; De Bodt M; Van de Heyning P
    Otol Neurotol; 2015 Jan; 36(1):51-60. PubMed ID: 25406874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Threshold Adjustment on Speech Perception in Nucleus Cochlear Implant Recipients.
    Busby PA; Arora K
    Ear Hear; 2016; 37(3):303-11. PubMed ID: 26671316
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Speech Understanding and Subjective Listening Effort in Noise With Different OTEs and Sound Processing Technologies.
    Wesarg T; Wiebe K; Galindo Guerreros JC; Arndt S; Aschendorff A; Voß B
    Otol Neurotol; 2024 Feb; 45(2):e91-e101. PubMed ID: 38206063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-Adjustment of Upper Electrical Stimulation Levels in CI Programming and the Effect on Auditory Functioning.
    Vroegop JL; Dingemanse JG; van der Schroeff MP; Metselaar RM; Goedegebure A
    Ear Hear; 2017; 38(4):e232-e240. PubMed ID: 28125445
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A method for determining precise electrical hearing thresholds in cochlear implant users.
    Rader T; Doms P; Adel Y; Weissgerber T; Strieth S; Baumann U
    Int J Audiol; 2018 Jul; 57(7):502-509. PubMed ID: 29390897
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A proposed electroacoustic test protocol for personal FM receivers coupled to cochlear implant sound processors.
    Schafer EC; Musgrave E; Momin S; Sandrock C; Romine D
    J Am Acad Audiol; 2013; 24(10):941-54. PubMed ID: 24384080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Binaural Cochlear Implant Sound Coding Strategy Inspired by the Contralateral Medial Olivocochlear Reflex.
    Lopez-Poveda EA; Eustaquio-Martín A; Stohl JS; Wolford RD; Schatzer R; Wilson BS
    Ear Hear; 2016; 37(3):e138-48. PubMed ID: 26862711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speech perception in noise: Impact of directional microphones in users of combined electric-acoustic stimulation.
    Weissgerber T; Stöver T; Baumann U
    PLoS One; 2019; 14(3):e0213251. PubMed ID: 30840668
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Matching the pitch perception of the cochlear implanted ear with the contralateral ear in patients with single-sided deafness: a novel approach.
    Tóth TF; Németh A; Bakó P; Révész P; Gerlinger I; Szanyi I
    Eur Arch Otorhinolaryngol; 2023 Nov; 280(11):4851-4859. PubMed ID: 37133499
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pre- and Postoperative Binaural Unmasking for Bimodal Cochlear Implant Listeners.
    Sheffield BM; Schuchman G; Bernstein JGW
    Ear Hear; 2017; 38(5):554-567. PubMed ID: 28301390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of behind-the-ear and off-the-ear sound processors on speech understanding performance in cochlear implant users.
    Bayri M; Çiprut A
    Auris Nasus Larynx; 2020 Dec; 47(6):950-957. PubMed ID: 32591169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of different signal-processing options on speech-in-noise recognition for cochlear implant recipients with the cochlear CP810 speech processor.
    Potts LG; Kolb KA
    J Am Acad Audiol; 2014 Apr; 25(4):367-79. PubMed ID: 25126684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.