These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 34401927)
41. Antibody Labeling with Fluorescent Dyes Using Magnetic Protein A and Protein G Beads. Nath N; Godat B; Urh M J Vis Exp; 2016 Sep; (115):. PubMed ID: 27685323 [TBL] [Abstract][Full Text] [Related]
42. Metal Affinity-Enabled Capture and Release Antibody Reagents Generate a Multiplex Biomarker Enrichment System that Improves Detection Limits of Rapid Diagnostic Tests. Bauer WS; Gulka CP; Silva-Baucage L; Adams NM; Haselton FR; Wright DW Anal Chem; 2017 Oct; 89(19):10216-10223. PubMed ID: 28853859 [TBL] [Abstract][Full Text] [Related]
44. Fabrication of cysteine-modified antibodies with Fc-specific conjugation for covalent and oriented immobilization of native antibodies. Du Y; Xu CM; Zhang YM; Pan ZX; Wang FS; Yang HM; Tang JB Int J Biol Macromol; 2024 Sep; 276(Pt 2):133962. PubMed ID: 39029833 [TBL] [Abstract][Full Text] [Related]
45. Highly specific and rapid immuno-fluorescent visualization and detection of E. coli O104:H4 with protein-A coated magnetic beads based LST-MUG assay. Barizuddin S; Balakrishnan B; Stringer RC; Dweik M J Microbiol Methods; 2015 Aug; 115():27-33. PubMed ID: 26003438 [TBL] [Abstract][Full Text] [Related]
46. Biological preparation of highly effective immunomagnetic beads for the separation, concentration, and detection of pathogenic bacteria in milk. Lim MC; Lee GH; Huynh DTN; Hong CE; Park SY; Jung JY; Park CS; Ko S; Kim YR Colloids Surf B Biointerfaces; 2016 Sep; 145():854-861. PubMed ID: 27315334 [TBL] [Abstract][Full Text] [Related]
47. Bioconjugation of Antibodies and Enzyme Labels onto Magnetic Beads. Otieno BA; Krause CE; Rusling JF Methods Enzymol; 2016; 571():135-50. PubMed ID: 27112398 [TBL] [Abstract][Full Text] [Related]
48. Reversible immobilization of antibodies on magnetic beads. Scouten WH; Konecny P Anal Biochem; 1992 Sep; 205(2):313-8. PubMed ID: 1443579 [TBL] [Abstract][Full Text] [Related]
49. SISCAPA peptide enrichment on magnetic beads using an in-line bead trap device. Anderson NL; Jackson A; Smith D; Hardie D; Borchers C; Pearson TW Mol Cell Proteomics; 2009 May; 8(5):995-1005. PubMed ID: 19196707 [TBL] [Abstract][Full Text] [Related]
50. Dose-response curve of a microfluidic magnetic bead-based surface coverage sandwich assay. Cornaglia M; Trouillon R; Tekin HC; Lehnert T; Gijs MA N Biotechnol; 2015 Sep; 32(5):433-40. PubMed ID: 25817550 [TBL] [Abstract][Full Text] [Related]
51. Probing the orientation of surface-immobilized immunoglobulin G by time-of-flight secondary ion mass spectrometry. Wang H; Castner DG; Ratner BD; Jiang S Langmuir; 2004 Mar; 20(5):1877-87. PubMed ID: 15801458 [TBL] [Abstract][Full Text] [Related]
52. Influence of immobilized biomolecules on magnetic bead plug formation and retention in capillary electrophoresis. Henken RL; Chantiwas R; Gilman SD Electrophoresis; 2012 Mar; 33(5):827-33. PubMed ID: 22437880 [TBL] [Abstract][Full Text] [Related]
53. Development of an immunocapture-polymerase chain reaction assay using IgY to detect Mycobacterium avium subsp. paratuberculosis. Chui LW; King R; Sim J Can J Vet Res; 2010 Apr; 74(2):102-7. PubMed ID: 20592839 [TBL] [Abstract][Full Text] [Related]
54. Measuring Antibody Orientation at the Bacterial Surface. Shannon O; Nordenfelt P Methods Mol Biol; 2017; 1535():331-337. PubMed ID: 27914090 [TBL] [Abstract][Full Text] [Related]
55. Advancing the global proteome survey platform by using an oriented single chain antibody fragment immobilization approach. Säll A; Persson H; Ohlin M; Borrebaeck CA; Wingren C N Biotechnol; 2016 Sep; 33(5 Pt A):503-13. PubMed ID: 26703809 [TBL] [Abstract][Full Text] [Related]
56. Computational study on the interactions and orientation of monoclonal human immunoglobulin G on a polystyrene surface. Javkhlantugs N; Bayar H; Ganzorig C; Ueda K Int J Nanomedicine; 2013; 8():2487-96. PubMed ID: 23874096 [TBL] [Abstract][Full Text] [Related]
57. Integration of antibody by surface functionalization of graphite-encapsulated magnetic beads using ammonia gas plasma technology for capturing influenza A virus. Sakudo A; Chou H; Ikuta K; Nagatsu M Bioorg Med Chem Lett; 2015 May; 25(9):1876-9. PubMed ID: 25857943 [TBL] [Abstract][Full Text] [Related]
58. Optimization of biotin labeling of antibodies using mouse IgG and goat anti-mouse IgG-conjugated fluorescent beads and their application as capture probes on protein chip. Lee JH; Choi HK; Chang JH J Immunol Methods; 2010 Oct; 362(1-2):38-42. PubMed ID: 20804762 [TBL] [Abstract][Full Text] [Related]
59. Magnetic particle-scanning for ultrasensitive immunodetection on-chip. Cornaglia M; Trouillon R; Tekin HC; Lehnert T; Gijs MA Anal Chem; 2014 Aug; 86(16):8213-23. PubMed ID: 25072276 [TBL] [Abstract][Full Text] [Related]
60. Development of Listeria monocytogenes-specific immunomagnetic beads using a single-chain antibody fragment. Paoli GC; Kleina LG; Brewster JD Foodborne Pathog Dis; 2007; 4(1):74-83. PubMed ID: 17378711 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]