BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 3440214)

  • 21. Development of glial cells in the cerebral wall of ferrets: direct tracing of their transformation from radial glia into astrocytes.
    Voigt T
    J Comp Neurol; 1989 Nov; 289(1):74-88. PubMed ID: 2808761
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ontogeny of sexually dimorphic astrocytes in the neonatal rat arcuate.
    Mong JA; McCarthy MM
    Brain Res Dev Brain Res; 2002 Dec; 139(2):151-8. PubMed ID: 12480129
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reductions in hypothalamic Gfap expression, glial cells and α-tanycytes in lean and hypermetabolic Gnasxl-deficient mice.
    Holmes AP; Wong SQ; Pulix M; Johnson K; Horton NS; Thomas P; de Magalhães JP; Plagge A
    Mol Brain; 2016 Apr; 9():39. PubMed ID: 27080240
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Capsaicin increases GFAP and glutamine synthetase immunoreactivity in rat arcuate nucleus and median eminence.
    Okere CO; Waterhouse BD
    Neuroreport; 2004 Feb; 15(2):255-8. PubMed ID: 15076747
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ontogeny of radial glia, astrocytes and vasoactive intestinal peptide immunoreactive neurons in hamster suprachiasmatic nucleus.
    Botchkina GI; Morin LP
    Brain Res Dev Brain Res; 1995 May; 86(1-2):48-56. PubMed ID: 7656431
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Astrocytic shape and glial fibrillary acidic protein immunoreactivity are modified by estradiol in primary rat hypothalamic cultures.
    Garcia-Segura LM; Torres-Aleman I; Naftolin F
    Brain Res Dev Brain Res; 1989 Jun; 47(2):298-302. PubMed ID: 2743562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Age-related changes of glial fibrillary acidic protein immunoreactive astrocytes in the rat cerebellar cortex.
    Sabbatini M; Barili P; Bronzetti E; Zaccheo D; Amenta F
    Mech Ageing Dev; 1999 May; 108(2):165-72. PubMed ID: 10400309
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Immunohistochemical localization of glial fibrillary acidic protein (GFAP) in rat pineal stalk astrocytes.
    López-Muñoz F; Boya J; Calvo JL; Marín F
    Histol Histopathol; 1992 Oct; 7(4):643-6. PubMed ID: 1457987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alteration of glial fibrillary acidic proteins immunoreactivity in astrocytes of the spinal cord diabetic rats.
    Afsari ZH; Renno WM; Abd-El-Basset E
    Anat Rec (Hoboken); 2008 Apr; 291(4):390-9. PubMed ID: 18360886
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radial glia-like cells in the supraoptic nucleus of the adult rat.
    Bonfanti L; Poulain DA; Theodosis DT
    J Neuroendocrinol; 1993 Feb; 5(1):1-5. PubMed ID: 8485539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Patterns of GFAP-immunoreactivity parallel the tonotopic axis in the developing dorsal cochlear nucleus.
    Riggs GH; Cooper NG; Schweitzer L
    Hear Res; 1995 Oct; 90(1-2):89-96. PubMed ID: 8975009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The distribution of glial fibrillary acidic protein and vimentin in postnatal marmoset (Callithrix jacchus) brain.
    McDermott KW; Lantos PL
    Brain Res Dev Brain Res; 1989 Feb; 45(2):169-77. PubMed ID: 2496940
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Astrocytes and guidance of outgrowing corticospinal tract axons in the rat. An immunocytochemical study using anti-vimentin and anti-glial fibrillary acidic protein.
    Joosten EA; Gribnau AA
    Neuroscience; 1989; 31(2):439-52. PubMed ID: 2797445
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of vimentin and glial fibrillary acidic protein immunoreactivities in the brain of gray mullet (Chelon labrosus), an advanced teleost.
    Arochena M; Anadón R; Díaz-Regueira SM
    J Comp Neurol; 2004 Feb; 469(3):413-36. PubMed ID: 14730591
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression of GFAP immunoreactivity during development of long fiber tracts in the rat CNS.
    Valentino KL; Jones EG; Kane SA
    Brain Res; 1983 Sep; 285(3):317-36. PubMed ID: 6627026
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The development of astrocytes immunoreactive for glial fibrillary acidic protein in the mediobasal hypothalamus of hypogonadal mice.
    McQueen JK; Wilson H
    Mol Cell Neurosci; 1994 Dec; 5(6):623-31. PubMed ID: 7704437
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential patterns of glial fibrillary acidic protein-immunolabeling in the brain of adult lizards.
    Ahboucha S; Laalaoui A; Didier-Bazes M; Montange M; Cooper HM; Gamrani H
    J Comp Neurol; 2003 Sep; 464(2):159-71. PubMed ID: 12898609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changes of parvalbumin immunoreactive neurons and GFAP immunoreactive astrocytes in the rat lateral geniculate nucleus following monocular enucleation.
    Gonzalez D; Satriotomo I; Miki T; Lee KY; Yokoyama T; Touge T; Matsumoto Y; Li HP; Kuriyama S; Takeuchi Y
    Neurosci Lett; 2006 Mar; 395(2):149-54. PubMed ID: 16309831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dehydration and rehydration selectively and reversibly alter glial fibrillary acidic protein immunoreactivity in the rat supraoptic nucleus and subjacent glial limitans.
    Hawrylak N; Fleming JC; Salm AK
    Glia; 1998 Mar; 22(3):260-71. PubMed ID: 9482212
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Distribution of glial fibrillary acidic protein (GFAP)-immunoreactive astrocytes in the rat brain. I. Forebrain.
    Kálmán M; Hajós F
    Exp Brain Res; 1989; 78(1):147-63. PubMed ID: 2591509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.