These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 34402208)
1. Barks of Three Wild Pyrus Taxa: Phenolic Constituents, Antioxidant Activity, and in Vitro and in Silico Investigations of α-Amylase and α-Glucosidase Inhibition. Ušjak LJ; Milutinović VM; Đorđić Crnogorac MJ; Stanojković TP; Niketić MS; Kukić-Marković JM; Petrović SD Chem Biodivers; 2021 Oct; 18(10):e2100446. PubMed ID: 34402208 [TBL] [Abstract][Full Text] [Related]
2. Optimization of Extraction Conditions for Biological Attributes of Newly Developed NARC-G1 Garlic Using Response Surface Methodology and Its GC-MS Characterization. Ullah S; Fayyaz Ur Rehman M Chem Biodivers; 2024 Oct; 21(10):e202401013. PubMed ID: 39189631 [TBL] [Abstract][Full Text] [Related]
3. Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Quan NV; Xuan TD; Tran HD; Thuy NTD; Trang LT; Huong CT; Andriana Y; Tuyen PT Molecules; 2019 Feb; 24(3):. PubMed ID: 30744084 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of antioxidant and α-glucosidase inhibitory activities of some subtropical plants. Prihantini AI; Tachibana S; Itoh K Pak J Biol Sci; 2014 Oct; 17(10):1106-14. PubMed ID: 26027154 [TBL] [Abstract][Full Text] [Related]
5. Das SK; Dash S; Thatoi H; Patra JK Comb Chem High Throughput Screen; 2020; 23(9):945-954. PubMed ID: 32342807 [TBL] [Abstract][Full Text] [Related]
6. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenal and Katononic Acid Isolated from Alqahtani AS; Hidayathulla S; Rehman MT; ElGamal AA; Al-Massarani S; Razmovski-Naumovski V; Alqahtani MS; El Dib RA; AlAjmi MF Biomolecules; 2019 Dec; 10(1):. PubMed ID: 31905962 [No Abstract] [Full Text] [Related]
7. Identification of highly potent α-glucosidase inhibitory and antioxidant constituents from Zizyphus rugosa bark: enzyme kinetic and molecular docking studies with active metabolites. Sichaem J; Aree T; Lugsanangarm K; Tip-Pyang S Pharm Biol; 2017 Dec; 55(1):1436-1441. PubMed ID: 28320255 [TBL] [Abstract][Full Text] [Related]
8. Phenolic Profile, Bioactivities and In Silico Analysis of the Trunk Bark of Acacia Cyanophylla Lindl. Beyaoui A; Kaplan M; Saidi I; Jalouli M; Ceyhan Goren A; Halim Harrath A; Ben Jannet H Chem Biodivers; 2024 Aug; 21(8):e202401061. PubMed ID: 38963913 [TBL] [Abstract][Full Text] [Related]
9. Medicinal properties of Ocotea bullata stem bark extracts: phytochemical constituents, antioxidant and anti-inflammatory activity, cytotoxicity and inhibition of carbohydrate-metabolizing enzymes. Ogundajo AL; Adeniran LA; Ashafa AO J Integr Med; 2018 Mar; 16(2):132-140. PubMed ID: 29526237 [TBL] [Abstract][Full Text] [Related]
10. HPLC-DAD phenolics analysis, α-glucosidase, α-amylase inhibitory, molecular docking and nutritional profiles of Persicaria hydropiper L. Mahnashi MH; Alqahtani YS; Alyami BA; Alqarni AO; Alqahl SA; Ullah F; Sadiq A; Zeb A; Ghufran M; Kuraev A; Nawaz A; Ayaz M BMC Complement Med Ther; 2022 Jan; 22(1):26. PubMed ID: 35086537 [TBL] [Abstract][Full Text] [Related]
11. Chemical Composition and Pharmacological Evaluation and of Toddalia asiatica (Rutaceae) Extracts and Essential Oil by in Vitro and in Silico Approaches. Lobine D; Pairyanen B; Zengin G; Yılmaz MA; Ouelbani R; Bensari S; Ak G; Abdallah HH; Imran M; Mahomoodally MF Chem Biodivers; 2021 Apr; 18(4):e2000999. PubMed ID: 33738900 [TBL] [Abstract][Full Text] [Related]
12. In vitro inhibition activity of polyphenol-rich extracts from Syzygium aromaticum (L.) Merr. & Perry (Clove) buds against carbohydrate hydrolyzing enzymes linked to type 2 diabetes and Fe(2+)-induced lipid peroxidation in rat pancreas. Adefegha SA; Oboh G Asian Pac J Trop Biomed; 2012 Oct; 2(10):774-81. PubMed ID: 23569846 [TBL] [Abstract][Full Text] [Related]
13. A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Aroua LM; Almuhaylan HR; Alminderej FM; Messaoudi S; Chigurupati S; Al-Mahmoud S; Mohammed HA Bioorg Chem; 2021 Sep; 114():105073. PubMed ID: 34153810 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in silico assessment of antidiabetic and antioxidant potencies of secondary metabolites from Gymnema sylvestre. Nganso Ditchou YO; Leutcha PB; Miaffo D; Mamoudou H; Ali MS; Amang À Ngnoung GA; Soh D; Agrawal M; Darbawa R; Zondegoumba Nkwengoua Tchouboun E; Meli Lannang A; Siwe Noundou X Biomed Pharmacother; 2024 Aug; 177():117043. PubMed ID: 38941896 [TBL] [Abstract][Full Text] [Related]
15. Influence of In Vitro Human Digestion Simulation on the Phenolics Contents and Biological Activities of the Aqueous Extracts from Turkish İnan Y; Akyüz S; Kurt-Celep I; Celep E; Yesilada E Molecules; 2021 Sep; 26(17):. PubMed ID: 34500753 [TBL] [Abstract][Full Text] [Related]
16. Phytochemical Analysis, Acetylcholinesterase Inhibition, Antidiabetic and Antioxidant Activities of Atriplex halimus L. (Amaranthaceae Juss.). Guedri MM; Krir N; Terol CC; Romdhane M; Boulila A; Guetat A Chem Biodivers; 2024 Jul; 21(7):e202301941. PubMed ID: 38224199 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Sabiu S; O'Neill FH; Ashafa AOT J Ethnopharmacol; 2016 May; 183():1-8. PubMed ID: 26902829 [TBL] [Abstract][Full Text] [Related]