These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 34402552)
1. Pseudopotentials for coarse-grained cross-link-assisted modeling of protein structures. Kogut M; Gong Z; Tang C; Liwo A J Comput Chem; 2021 Nov; 42(29):2054-2067. PubMed ID: 34402552 [TBL] [Abstract][Full Text] [Related]
2. Assessment of Two Restraint Potentials for Coarse-Grained Chemical-Cross-Link-Assisted Modeling of Protein Structures. Leśniewski M; Pyrka M; Czaplewski C; Co NT; Jiang Y; Gong Z; Tang C; Liwo A J Chem Inf Model; 2024 Feb; 64(4):1377-1393. PubMed ID: 38345917 [TBL] [Abstract][Full Text] [Related]
3. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations. Sieradzan AK; Krupa P; Scheraga HA; Liwo A; Czaplewski C J Chem Theory Comput; 2015 Feb; 11(2):817-31. PubMed ID: 25691834 [TBL] [Abstract][Full Text] [Related]
4. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. VI. Oppositely charged side chains. Makowski M; Liwo A; Scheraga HA J Phys Chem B; 2011 May; 115(19):6130-7. PubMed ID: 21500791 [TBL] [Abstract][Full Text] [Related]
5. Extension of the force-matching method to coarse-grained models with axially symmetric sites to produce transferable force fields: Application to the UNRES model of proteins. Liwo A; Czaplewski C J Chem Phys; 2020 Feb; 152(5):054902. PubMed ID: 32035448 [TBL] [Abstract][Full Text] [Related]
6. Determination of side-chain-rotamer and side-chain and backbone virtual-bond-stretching potentials of mean force from AM1 energy surfaces of terminally-blocked amino-acid residues, for coarse-grained simulations of protein structure and folding. II. Results, comparison with statistical potentials, and implementation in the UNRES force field. Kozłowska U; Maisuradze GG; Liwo A; Scheraga HA J Comput Chem; 2010 Apr; 31(6):1154-67. PubMed ID: 20017135 [TBL] [Abstract][Full Text] [Related]
7. A new protein nucleic-acid coarse-grained force field based on the UNRES and NARES-2P force fields. Sieradzan AK; Giełdoń A; Yin Y; He Y; Scheraga HA; Liwo A J Comput Chem; 2018 Oct; 39(28):2360-2370. PubMed ID: 30306573 [TBL] [Abstract][Full Text] [Related]
8. Extension of the UNRES Coarse-Grained Force Field to Membrane Proteins in the Lipid Bilayer. Ziȩba K; Ślusarz M; Ślusarz R; Liwo A; Czaplewski C; Sieradzan AK J Phys Chem B; 2019 Sep; 123(37):7829-7839. PubMed ID: 31454484 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the scale-consistent UNRES force field in template-free prediction of protein structures in the CASP13 experiment. Lubecka EA; Karczyńska AS; Lipska AG; Sieradzan AK; Ziȩba K; Sikorska C; Uciechowska U; Samsonov SA; Krupa P; Mozolewska MA; Golon Ł; Giełdoń A; Czaplewski C; Ślusarz R; Ślusarz M; Crivelli SN; Liwo A J Mol Graph Model; 2019 Nov; 92():154-166. PubMed ID: 31376733 [TBL] [Abstract][Full Text] [Related]
10. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics. Czaplewski C; Karczynska A; Sieradzan AK; Liwo A Nucleic Acids Res; 2018 Jul; 46(W1):W304-W309. PubMed ID: 29718313 [TBL] [Abstract][Full Text] [Related]
11. Prediction of protein structure with the coarse-grained UNRES force field assisted by small X-ray scattering data and knowledge-based information. Karczyńska AS; Mozolewska MA; Krupa P; Giełdoń A; Liwo A; Czaplewski C Proteins; 2018 Mar; 86 Suppl 1():228-239. PubMed ID: 29134679 [TBL] [Abstract][Full Text] [Related]
12. Introduction of a bounded penalty function in contact-assisted simulations of protein structures to omit false restraints. Lubecka EA; Liwo A J Comput Chem; 2019 Sep; 40(25):2164-2178. PubMed ID: 31037754 [TBL] [Abstract][Full Text] [Related]
13. A coarse-grained approach to NMR-data-assisted modeling of protein structures. Lubecka EA; Liwo A J Comput Chem; 2022 Dec; 43(31):2047-2059. PubMed ID: 36134668 [TBL] [Abstract][Full Text] [Related]
14. Simple physics-based analytical formulas for the potentials of mean force of the interaction of amino-acid side chains in water. V. Like-charged side chains. Makowski M; Liwo A; Sobolewski E; Scheraga HA J Phys Chem B; 2011 May; 115(19):6119-29. PubMed ID: 21500792 [TBL] [Abstract][Full Text] [Related]
15. Improvements and new functionalities of UNRES server for coarse-grained modeling of protein structure, dynamics, and interactions. Ślusarz R; Lubecka EA; Czaplewski C; Liwo A Front Mol Biosci; 2022; 9():1071428. PubMed ID: 36589235 [TBL] [Abstract][Full Text] [Related]
16. An improved functional form for the temperature scaling factors of the components of the mesoscopic UNRES force field for simulations of protein structure and dynamics. Shen H; Liwo A; Scheraga HA J Phys Chem B; 2009 Jun; 113(25):8738-44. PubMed ID: 19480420 [TBL] [Abstract][Full Text] [Related]
17. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
18. Template-Guided Protein Structure Prediction and Refinement Using Optimized Folding Landscape Force Fields. Chen M; Lin X; Lu W; Schafer NP; Onuchic JN; Wolynes PG J Chem Theory Comput; 2018 Nov; 14(11):6102-6116. PubMed ID: 30240202 [TBL] [Abstract][Full Text] [Related]
19. Coarse-grained force field: general folding theory. Liwo A; He Y; Scheraga HA Phys Chem Chem Phys; 2011 Oct; 13(38):16890-901. PubMed ID: 21643583 [TBL] [Abstract][Full Text] [Related]
20. Continuous anisotropic representation of coarse-grained potentials for proteins by spherical harmonics synthesis. Buchete NV; Straub JE; Thirumalai D J Mol Graph Model; 2004 May; 22(5):441-50. PubMed ID: 15099839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]