These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 34402751)

  • 1. Effects of chain length of polyethylene glycol molecular crowders on a mutant
    Dobirul Islam M; Motiar Rahman M; Matsumura S; Ikawa Y
    Nucleosides Nucleotides Nucleic Acids; 2021; 40(9):867-883. PubMed ID: 34402751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biogenic triamine and tetraamine activate core catalytic ability of Tetrahymena group I ribozyme in the absence of its large activator module.
    Gulshan MA; Rahman MM; Matsumura S; Higuchi T; Umezawa N; Ikawa Y
    Biochem Biophys Res Commun; 2018 Feb; 496(2):594-600. PubMed ID: 29339152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Installation of orthogonality to the interface that assembles two modular domains in the Tetrahymena group I ribozyme.
    Tanaka T; Furuta H; Ikawa Y
    J Biosci Bioeng; 2014 Apr; 117(4):407-12. PubMed ID: 24216461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of molecular crowding on a bimolecular group I ribozyme and its derivative that self-assembles to form ribozyme oligomers.
    Rahman MM; Matsumura S; Ikawa Y
    Biochem Biophys Res Commun; 2018 Dec; 507(1-4):136-141. PubMed ID: 30415779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The P5abc peripheral element facilitates preorganization of the tetrahymena group I ribozyme for catalysis.
    Engelhardt MA; Doherty EA; Knitt DS; Doudna JA; Herschlag D
    Biochemistry; 2000 Mar; 39(10):2639-51. PubMed ID: 10704214
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trans-activation of the Tetrahymena ribozyme by its P2-2.1 domains.
    Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 1998 Mar; 123(3):528-33. PubMed ID: 9538238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
    Zhang L; Xiao M; Lu C; Zhang Y
    RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Programmable formation of catalytic RNA triangles and squares by assembling modular RNA enzymes.
    Oi H; Fujita D; Suzuki Y; Sugiyama H; Endo M; Matsumura S; Ikawa Y
    J Biochem; 2017 May; 161(5):451-462. PubMed ID: 28096453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the newly constructed domains that replace P5abc within the Tetrahymena ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    FEBS Lett; 1996 Sep; 394(1):5-8. PubMed ID: 8925926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein roles in group I intron RNA folding: the tyrosyl-tRNA synthetase CYT-18 stabilizes the native state relative to a long-lived misfolded structure without compromising folding kinetics.
    Chadee AB; Bhaskaran H; Russell R
    J Mol Biol; 2010 Jan; 395(3):656-70. PubMed ID: 19913030
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A rearrangement of the guanosine-binding site establishes an extended network of functional interactions in the Tetrahymena group I ribozyme active site.
    Forconi M; Sengupta RN; Piccirilli JA; Herschlag D
    Biochemistry; 2010 Mar; 49(12):2753-62. PubMed ID: 20175542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of counterion condensation in folding of the Tetrahymena ribozyme. II. Counterion-dependence of folding kinetics.
    Heilman-Miller SL; Pan J; Thirumalai D; Woodson SA
    J Mol Biol; 2001 May; 309(1):57-68. PubMed ID: 11491301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of the P5abc peripheral element accelerates early and late folding steps of the Tetrahymena group I ribozyme.
    Russell R; Tijerina P; Chadee AB; Bhaskaran H
    Biochemistry; 2007 May; 46(17):4951-61. PubMed ID: 17419589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hammerhead ribozyme allows synthesis of a new form of the Tetrahymena ribozyme homogeneous in length with a 3' end blocked for transesterification.
    Grosshans CA; Cech TR
    Nucleic Acids Res; 1991 Jul; 19(14):3875-80. PubMed ID: 1650453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The P5 activator of a group IC ribozyme can replace the P7.1/7.2 activator of a group IA ribozyme.
    Ikawa Y; Sasaki K; Tominaga H; Inoue T
    J Biochem; 2003 May; 133(5):665-70. PubMed ID: 12801919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The long-range P3 helix of the Tetrahymena ribozyme is disrupted during folding between the native and misfolded conformations.
    Mitchell D; Jarmoskaite I; Seval N; Seifert S; Russell R
    J Mol Biol; 2013 Aug; 425(15):2670-86. PubMed ID: 23702292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.