BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 34403031)

  • 1. Performance of Computer-Aided Detection and Diagnosis of Colorectal Polyps Compares to That of Experienced Endoscopists.
    Sakamoto T; Nakashima H; Nakamura K; Nagahama R; Saito Y
    Dig Dis Sci; 2022 Aug; 67(8):3976-3983. PubMed ID: 34403031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a new integrated computer-assisted system (CADe/CADx) for detection and characterization of colorectal neoplasia.
    Weigt J; Repici A; Antonelli G; Afifi A; Kliegis L; Correale L; Hassan C; Neumann H
    Endoscopy; 2022 Feb; 54(2):180-184. PubMed ID: 33494106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An analysis about the function of a new artificial intelligence, CAD EYE with the lesion recognition and diagnosis for colorectal polyps in clinical practice.
    Yoshida N; Inoue K; Tomita Y; Kobayashi R; Hashimoto H; Sugino S; Hirose R; Dohi O; Yasuda H; Morinaga Y; Inada Y; Murakami T; Zhu X; Itoh Y
    Int J Colorectal Dis; 2021 Oct; 36(10):2237-2245. PubMed ID: 34406437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of computer-aided characterization for diagnosis of colorectal lesions, including sessile serrated lesions: Multireader, multicase study.
    Kato S; Kudo SE; Minegishi Y; Miyata Y; Maeda Y; Kuroki T; Takashina Y; Mochizuki K; Tamura E; Abe M; Sato Y; Sakurai T; Kouyama Y; Tanaka K; Ogawa Y; Nakamura H; Ichimasa K; Ogata N; Hisayuki T; Hayashi T; Wakamura K; Miyachi H; Baba T; Ishida F; Nemoto T; Misawa M;
    Dig Endosc; 2024 Mar; 36(3):341-350. PubMed ID: 37937532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality assurance of computer-aided detection and diagnosis in colonoscopy.
    Vinsard DG; Mori Y; Misawa M; Kudo SE; Rastogi A; Bagci U; Rex DK; Wallace MB
    Gastrointest Endosc; 2019 Jul; 90(1):55-63. PubMed ID: 30926431
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-World Validation of a Computer-Aided Diagnosis System for Prediction of Polyp Histology in Colonoscopy: A Prospective Multicenter Study.
    Li JW; Wu CCH; Lee JWJ; Liang R; Soon GST; Wang LM; Koh XH; Koh CJ; Chew WD; Lin KW; Thian MY; Matthew R; Kim G; Khor CJL; Fock KM; Ang TL; So JBY;
    Am J Gastroenterol; 2023 Aug; 118(8):1353-1364. PubMed ID: 37040553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Intelligence Allows Leaving-In-Situ Colorectal Polyps.
    Hassan C; Balsamo G; Lorenzetti R; Zullo A; Antonelli G
    Clin Gastroenterol Hepatol; 2022 Nov; 20(11):2505-2513.e4. PubMed ID: 35835342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided diagnosis system for optical diagnosis of colorectal polyps under white light imaging.
    Cheng Y; Li L; Bi Y; Su S; Zhang B; Feng X; Wang N; Zhang W; Yao Y; Ru N; Xiang J; Sun L; Hu K; Wen F; Wang Z; Bai L; Wang X; Wang R; Lv X; Wang P; Meng F; Xiao W; Linghu E; Chai N
    Dig Liver Dis; 2024 May; ():. PubMed ID: 38744557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance and attitudes toward real-time computer-aided polyp detection during colonoscopy in a large tertiary referral center in the United States.
    Nehme F; Coronel E; Barringer DA; Romero LG; Shafi MA; Ross WA; Ge PS
    Gastrointest Endosc; 2023 Jul; 98(1):100-109.e6. PubMed ID: 36801459
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical diagnosis of colorectal polyp images using a newly developed computer-aided diagnosis system (CADx) compared with intuitive optical diagnosis.
    van der Zander QEW; Schreuder RM; Fonollà R; Scheeve T; van der Sommen F; Winkens B; Aepli P; Hayee B; Pischel AB; Stefanovic M; Subramaniam S; Bhandari P; de With PHN; Masclee AAM; Schoon EJ
    Endoscopy; 2021 Dec; 53(12):1219-1226. PubMed ID: 33368056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial).
    Glissen Brown JR; Mansour NM; Wang P; Chuchuca MA; Minchenberg SB; Chandnani M; Liu L; Gross SA; Sengupta N; Berzin TM
    Clin Gastroenterol Hepatol; 2022 Jul; 20(7):1499-1507.e4. PubMed ID: 34530161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Computer-Aided Detection During Colonoscopy in the Community (AI-SEE): A Multicenter Randomized Clinical Trial.
    Wei MT; Shankar U; Parvin R; Abbas SH; Chaudhary S; Friedlander Y; Friedland S
    Am J Gastroenterol; 2023 Oct; 118(10):1841-1847. PubMed ID: 36892545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Real-Time Computer-Aided Polyp Detection System (ENDO-AID) on Adenoma Detection in Endoscopists-in-Training: A Randomized Trial.
    Lau LHS; Ho JCL; Lai JCT; Ho AHY; Wu CWK; Lo VWH; Lai CMS; Scheppach MW; Sia F; Ho KHK; Xiao X; Yip TCF; Lam TYT; Kwok HYH; Chan HCH; Lui RN; Chan TT; Wong MTL; Ho MF; Ko RCW; Hon SF; Chu S; Futaba K; Ng SSM; Yip HC; Tang RSY; Wong VWS; Chan FKL; Chiu PWY;
    Clin Gastroenterol Hepatol; 2024 Mar; 22(3):630-641.e4. PubMed ID: 37918685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lower Adenoma Miss Rate of Computer-Aided Detection-Assisted Colonoscopy vs Routine White-Light Colonoscopy in a Prospective Tandem Study.
    Wang P; Liu P; Glissen Brown JR; Berzin TM; Zhou G; Lei S; Liu X; Li L; Xiao X
    Gastroenterology; 2020 Oct; 159(4):1252-1261.e5. PubMed ID: 32562721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of artificial intelligence in the characterization of colorectal lesions.
    Dos Santos CEO; Malaman D; Sanmartin IDA; Leão ABS; Leão GS; Pereira-Lima JC
    Saudi J Gastroenterol; 2023; 29(4):219-224. PubMed ID: 37203122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clinical Evaluation of Computer-Aided Colorectal Neoplasia Detection Using a Novel Endoscopic Artificial Intelligence: A Single-Center Randomized Controlled Trial.
    Nakashima H; Kitazawa N; Fukuyama C; Kawachi H; Kawahira H; Momma K; Sakaki N
    Digestion; 2023; 104(3):193-201. PubMed ID: 36599306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic image and text-based description for colorectal polyps using BASIC classification.
    Fonollà R; van der Zander QEW; Schreuder RM; Subramaniam S; Bhandari P; Masclee AAM; Schoon EJ; van der Sommen F; de With PHN
    Artif Intell Med; 2021 Nov; 121():102178. PubMed ID: 34763800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a novel computer-aided diagnosis system in the characterization of colorectal polyps, and its role in meeting Preservation and Incorporation of Valuable Endoscopic Innovations standards set by the American Society of Gastrointestinal Endoscopy.
    Hossain E; Abdelrahim M; Tanasescu A; Yamada M; Kondo H; Yamada S; Hamamoto R; Marugame A; Saito Y; Bhandari P
    DEN Open; 2023 Apr; 3(1):e178. PubMed ID: 36320934
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of a deep-learning computer-aided detection system on adenoma detection during colonoscopy (CADe-DB trial): a double-blind randomised study.
    Wang P; Liu X; Berzin TM; Glissen Brown JR; Liu P; Zhou C; Lei L; Li L; Guo Z; Lei S; Xiong F; Wang H; Song Y; Pan Y; Zhou G
    Lancet Gastroenterol Hepatol; 2020 Apr; 5(4):343-351. PubMed ID: 31981517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time colorectal polyp detection using a novel computer-aided detection system (CADe): a feasibility study.
    Soons E; Rath T; Hazewinkel Y; van Dop WA; Esposito D; Testoni PA; Siersema PD
    Int J Colorectal Dis; 2022 Oct; 37(10):2219-2228. PubMed ID: 36163514
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.