These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 34403059)
41. Removal mechanisms of 17β-estradiol and 17α-ethinylestradiol in membrane bioreactors. Yang W; Zhou H; Cicek N Water Sci Technol; 2012; 66(6):1263-9. PubMed ID: 22828304 [TBL] [Abstract][Full Text] [Related]
42. Environmental aspects of hormones estriol, 17β-estradiol and 17α-ethinylestradiol: Electrochemical processes as next-generation technologies for their removal in water matrices. Torres NH; Santos GOS; Romanholo Ferreira LF; Américo-Pinheiro JHP; Eguiluz KIB; Salazar-Banda GR Chemosphere; 2021 Mar; 267():128888. PubMed ID: 33190907 [TBL] [Abstract][Full Text] [Related]
43. Photodegradation of the steroid hormones 17beta-estradiol (E2) and 17alpha-ethinylestradiol (EE2) in dilute aqueous solution. Mazellier P; Méité L; De Laat J Chemosphere; 2008 Nov; 73(8):1216-23. PubMed ID: 18762316 [TBL] [Abstract][Full Text] [Related]
44. Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification. Alvarez-Corena JR; Bergendahl JA; Hart FL J Environ Manage; 2016 Oct; 181():544-551. PubMed ID: 27423767 [TBL] [Abstract][Full Text] [Related]
45. Removal of bromate from drinking water using a heterogeneous photocatalytic mili-reactor: impact of the reactor material and water matrix. Cunha GS; Santos SGS; Souza-Chaves BM; Silva TFCV; Bassin JP; Dezotti MWC; Boaventura RAR; Dias MM; Lopes JCB; Vilar VJP Environ Sci Pollut Res Int; 2019 Nov; 26(32):33281-33293. PubMed ID: 31520394 [TBL] [Abstract][Full Text] [Related]
46. Graphene oxide based ultrafiltration membranes for photocatalytic degradation of organic pollutants in salty water. Pastrana-Martínez LM; Morales-Torres S; Figueiredo JL; Faria JL; Silva AMT Water Res; 2015 Jun; 77():179-190. PubMed ID: 25875927 [TBL] [Abstract][Full Text] [Related]
47. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical). Lee Y; von Gunten U Water Res; 2010 Jan; 44(2):555-66. PubMed ID: 20015530 [TBL] [Abstract][Full Text] [Related]
48. Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant. Jiang N; Xu H; Wang L; Jiang J; Zhang T Environ Sci Technol; 2020 Nov; 54(21):14057-14065. PubMed ID: 33094996 [TBL] [Abstract][Full Text] [Related]
49. Ag@helical chiral TiO2 nanofibers for visible light photocatalytic degradation of 17α-ethinylestradiol. Zhang C; Li Y; Wang D; Zhang W; Wang Q; Wang Y; Wang P Environ Sci Pollut Res Int; 2015 Jul; 22(14):10444-51. PubMed ID: 25721529 [TBL] [Abstract][Full Text] [Related]
50. Catalytic oxidative degradation of 17α-ethinylestradiol by FeIII-TAML/H2O2: estrogenicities of the products of partial, and extensive oxidation. Chen JL; Ravindran S; Swift S; Wright LJ; Singhal N Water Res; 2012 Dec; 46(19):6309-18. PubMed ID: 23022118 [TBL] [Abstract][Full Text] [Related]
51. Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Sichel C; Garcia C; Andre K Water Res; 2011 Dec; 45(19):6371-80. PubMed ID: 22000058 [TBL] [Abstract][Full Text] [Related]
52. Treatment of secondary effluent by sequential combination of photocatalytic oxidation with ceramic membrane filtration. Song L; Zhu B; Jegatheesan V; Gray S; Duke M; Muthukumaran S Environ Sci Pollut Res Int; 2018 Feb; 25(6):5191-5202. PubMed ID: 28462432 [TBL] [Abstract][Full Text] [Related]
53. Degradation and mineralization of Bisphenol A (BPA) in aqueous solution using advanced oxidation processes: UV/H2O2 and UV/S2O8(2-) oxidation systems. Sharma J; Mishra IM; Kumar V J Environ Manage; 2015 Jun; 156():266-75. PubMed ID: 25889275 [TBL] [Abstract][Full Text] [Related]
54. Ozone-Based Advanced Oxidation Processes for Primidone Removal in Water using Simulated Solar Radiation and TiO Figueredo MA; Rodríguez EM; Checa M; Beltran FJ Molecules; 2019 May; 24(9):. PubMed ID: 31058864 [TBL] [Abstract][Full Text] [Related]
55. Degradation behavior of 17alpha-ethinylestradiol by ozonation in the synthetic secondary effluent. Zhang Z; Zhu H; Wen X; Si X J Environ Sci (China); 2012; 24(2):228-33. PubMed ID: 22655381 [TBL] [Abstract][Full Text] [Related]
56. Sulfate radicals-based advanced oxidation processes for the degradation of pharmaceuticals and personal care products: A review on relevant activation mechanisms, performance, and perspectives. Hassani A; Scaria J; Ghanbari F; Nidheesh PV Environ Res; 2023 Jan; 217():114789. PubMed ID: 36375505 [TBL] [Abstract][Full Text] [Related]
57. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Lee J; von Gunten U; Kim JH Environ Sci Technol; 2020 Mar; 54(6):3064-3081. PubMed ID: 32062964 [TBL] [Abstract][Full Text] [Related]
58. Hydroxyl radical-based and sulfate radical-based photocatalytic advanced oxidation processes for treatment of refractory organic matter in semi-aerobic aged refuse biofilter effluent arising from treating landfill leachate. Guo S; Wang Q; Luo C; Yao J; Qiu Z; Li Q Chemosphere; 2020 Mar; 243():125390. PubMed ID: 31770699 [TBL] [Abstract][Full Text] [Related]
59. Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol. Wang D; Li Y; Zhang W; Wang Q; Wang P; Wang C Environ Sci Pollut Res Int; 2013 Apr; 20(4):2321-9. PubMed ID: 22869503 [TBL] [Abstract][Full Text] [Related]
60. Efficient removal of endosulfan from aqueous solution by UV-C/peroxides: a comparative study. Shah NS; He X; Khan HM; Khan JA; O'Shea KE; Boccelli DL; Dionysiou DD J Hazard Mater; 2013 Dec; 263 Pt 2():584-92. PubMed ID: 24231332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]