These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34403239)

  • 1. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation.
    Wang Y; Chen H; Zhai J
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):41159-41168. PubMed ID: 34403239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices.
    Fu L; Wang Y; Jiang J; Lu B; Zhai J
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):35197-35206. PubMed ID: 34266231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion.
    Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In-depth understanding of boosting salinity gradient power generation by ionic diode.
    Peng R; Li T; Song H; Wang S; Song Y; Wang J; Xu M
    iScience; 2023 Jul; 26(7):107184. PubMed ID: 37534140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TRPM4-Inspired Polymeric Nanochannels with Preferential Cation Transport for High-Efficiency Salinity-Gradient Energy Conversion.
    Huang D; Zou K; Wu Y; Li K; Zhang Z; Liu T; Chen W; Yan Z; Zhou S; Kong XY; Jiang L; Wen L
    J Am Chem Soc; 2024 Jun; ():. PubMed ID: 38842082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Super-Assembly of Vacancy Engineered Ultrathin-Nanosheets Toward Nanochannels for Smart Ion Transport and Salinity Gradient Power Conversion.
    Awati A; Yang R; Shi T; Zhou S; Zhang X; Zeng H; Lv Y; Liang K; Xie L; Zhu D; Liu M; Kong B
    Angew Chem Int Ed Engl; 2024 Aug; 63(32):e202407491. PubMed ID: 38735853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Super-Assembly of T-Mode Janus Porous Heterochannels from Layered Graphene and Aluminum Oxide Array for Smart Oriented Ion Transportation.
    Zhang L; Zhou S; Xie L; Wen L; Tang J; Liang K; Kong X; Zeng J; Zhang R; Liu J; Qiu B; Jiang L; Kong B
    Small; 2021 Apr; 17(13):e2100141. PubMed ID: 33690995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Euryhaline-Fish-Inspired Salinity Self-Adaptive Nanofluidic Diode Leads to High-Performance Blue Energy Harvesters.
    Hao J; Bao B; Zhou J; Cui Y; Chen X; Zhou J; Zhou Y; Jiang L
    Adv Mater; 2022 Aug; 34(31):e2203109. PubMed ID: 35673895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanofluidic Membranes to Address the Challenges of Salinity Gradient Energy Harvesting: Roles of Nanochannel Geometry and Bipolar Soft Layer.
    Dartoomi H; Khatibi M; Ashrafizadeh SN
    Langmuir; 2022 Aug; 38(33):10313-10330. PubMed ID: 35952366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System.
    Dong Y; Zhao Z; Zhao J; Guo Z; Du G; Sun Y; He D; Duan J; Liu J; Yao H
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29197-29212. PubMed ID: 35704847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion.
    Hou S; Ji W; Chen J; Teng Y; Wen L; Jiang L
    Angew Chem Int Ed Engl; 2021 Apr; 60(18):9925-9930. PubMed ID: 33527640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH
    Yao L; Li Q; Pan S; Cheng J; Liu X
    Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis.
    Wang S; Sun Z; Ahmad M; Fu W; Gao Z
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-regulated ionic conductance in a nanochannel with overlapped electric double layers.
    Ma Y; Yeh LH; Lin CY; Mei L; Qian S
    Anal Chem; 2015 Apr; 87(8):4508-14. PubMed ID: 25803424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tripling the reverse electrodialysis power generation in conical nanochannels utilizing soft surfaces.
    Khatibi M; Sadeghi A; Ashrafizadeh SN
    Phys Chem Chem Phys; 2021 Jan; 23(3):2211-2221. PubMed ID: 33439162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Mass transport properties and applications of nanochannels].
    Li Z; Wu Z; Xia X
    Se Pu; 2020 Oct; 38(10):1189-1196. PubMed ID: 34213115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust sulfonated poly (ether ether ketone) nanochannels for high-performance osmotic energy conversion.
    Zhao Y; Wang J; Kong XY; Xin W; Zhou T; Qian Y; Yang L; Pang J; Jiang L; Wen L
    Natl Sci Rev; 2020 Aug; 7(8):1349-1359. PubMed ID: 34692163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.